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An effect test space, or E-test space, for short, is a generalization of a test 
space that is able to describe unsharp measurements. Effects in an E-test space 
correspond to yes-no measurements, and observables correspond to general 
measurements that may have more than two values. Sharpness, compatibility, 
and orthogonality of effects are considered. It is shown that every observable is 
determined by its eigenvalues and eigeneffects. The spectrum of an observable 
is studied and special types of observables are investigated. Orthocomplements 
and a natural local sum on an E-test space are introduced. Relationships between 
the resulting structures and previously studied frameworks are presented. 

1. I N T R O D U C T I O N  

In 1972, Foulis and Randall (also see Randall  and Foulis, 1973) intro- 
duced test spaces (or quasimanuals) as a basis o f  a language for the empirical 
sciences. As emphasized by Foulis and Randall,  test spaces give a direct 
description of  laboratory operations. Information is lost in moving from a 
test space to its corresponding logic, and for  this reason, test spaces provide 
a more fundamental description o f  a physical  system. Twenty- two years later, 
Dvure6enskij and Pulmannovfi (1994; also see Pulmannovfi  and Wilce, 1995) 
presented a generalization of  test spaces called D-test spaces in order to 
include a description o f  unsharp measurements.  Subsequently, the author 
studied an equivalent f ramework called an effect test space, or E-test space, 
for short (Gudder, n.d.). 

It is shown in Dvure6enskij and Pulmannov~i (1994) and Gudder (n.d.) 
that a certain type o f  E-test space called an algebraic E-test space can be 
organized into an effect algebra (Bennett and Foulis, 1995; Dalla Chiara and 
Giuntini, 1994; Dvure~enskij, 1995; Foulis and Bennett,  1994; Giuntini and 
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Greuling, 1989; Greechie and Foulis, 1995; Krpka, 1992; Krpka and Chova- 
nec, 1994) in a natural way. This effect algebra II(X) corresponds to the logic 
of the E-test space X. As before, information is lost in moving from X to 
II(X), and X provides a more fundamental description of a physical system. 
Moreover, the algebraic condition does not appear to have a clear physical 
motivation, and for this reason the logic may not even exist. In this paper 
we shall study E-test spaces in their own right and we shall not be concerned 
with their relationships to effect algebras. 

We begin by motivating the concept of an E-test space and presenting 
some basic definitions. The most important of these definitions are the proper- 
ties of sharpness, compatibility, and orthogonality for effects in an E-test 
space. Although an effect corresponds to a yes-no measurement, an observ- 
able corresponds to a general measurement that can have more than two 
values. We show that every observable is determined by its eigenvalues and 
eigeneffects. The spectrum of an observable is studied and various spectral 
mapping theorems are proved. Special types of observables called universal 
and maximal observables are defined and investigated. 

Two kinds of orthocomplements on an E-test space are introduced and 
their properties are studied. The orthocomplements are local in the sense that 
they depend on the test being performed. A natural local sum and other 
operations depending on this sum are defined. Relationships between the 
resulting structures, MV-algebras (Cattaneo et al., n.d.; Chang, 1957, 1958; 
Dalla Chlara and Giuntini, 1994) quantum MV-algebras (Giuntini, 1995, 
n.d.), and BZ-algebras (Cattaneo, 1993; Cattaneo and Giuntini, 1995; Cattaneo 
and Nisticb, 1989) are discussed. Finally a Sasaki mapping on an E-test space 
is considered and its connection to classical and semi-classical E-test spaces 
is demonstrated (Bennett and Foulis, 1995). 

2. MOTIVATION AND DEFINITIONS 

We begin with some motivation that underlies our definition of an effect 
test space. We consider a test t to be a perfectly accurate (sharp) yes-no 
measurement. Although a test is an idealization that cannot be attained in 
practice, experimentalists continually refine their measuring instruments to 
closely approximate a test. Let x be a possible outcome of an experiment 
that is relevant to (testable by) t. If x occurs, then t registers yes, and if x 
does not occur, t registers no. For example, a particle detector t tests whether 
a particle is in a certain region A C_ R 3. If a particle is at a point x e A, then 
t clicks, and otherwise, t does not click. 

Now make N runs of an experiment, where N is a large integer. Suppose 
that the outcomes S( t )  = {xl . . . .  xn} that are testable by t are among the 
possible outcomes of the experiment. Let t (xi) be the number of times that 
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x,. occurs and hence are ideally registered as a yes by t, i = 1 . . . . .  n. Then 
we can consider t as a function t: S(t) --* No = N LJ {0}. We think of  an 
effect f as a submeasurement of  t that may not be perfectly accurate (can be 
unsharp). Thus, effects correspond to yes-no measurements that are actually 
realizable. Let S ( f )  = {x~ . . . . .  Xm}, m <-- n, be the set of  outcomes that are 
testable by f Now rerun the experiment N times and let f (x i )  be the number 
of  times that f regis ters  a yes when x; occurs. I f f  is unsharp, then f may not 
register a yes when xi E S ( f )  occurs. Also, on rare occasions, f may register 
a false yes for xi �9 S ( f )  even when xi does not occur. However, on the 
average we would have f (x i )  <- t (xi), i = 1 . . . . .  m. Notice that the effect f 
is sharp if only if f (x i )  = t(xi) for all xi ~ S ( f ) .  

We now present some definitions that are motivated by our previous 
discussion. Let X be a nonempty set that we call an outcome space. The 
elements of X correspond to the various outcomes of  experiments that can 
be performed on a fixed physical system. We call a function f �9 N x a 
multiplicity function and such functions take account of  the fact that an 
outcome may occur with a certain multiplicity when an experiment is per- 
formed many times. For f, g �9 No x we write f --< g if f ( x )  <-- g (x) for all 
x �9 X and in this case we define g - f �9 N0 x by (g - ])(x) = g (x) - f ( x ) .  
F o r f  g �9 N x, we define f +  g �9 N0 x b y  ( f +  g)(x) = f ( x )  + g ( x ) , f v  
g �9 N0 x by ( f  v g)(x) = max  ( f (x ) ,  g (x)), and f ^ g �9 No x by ( f  ^ g)(x) = 
min(f(x) ,  g (x)). 

I f  ~- C_ N~, we call (X, ~ )  an effect test space or an E-test space, for 
short, if the following conditions hold. 

(El )  For any x �9 X there exists a t �9 ~- such that t (x) r 0. 
(E2) If  s, t �9 ~ with s --< t, then s = t. 

The elements of  ~- are called tests a n d f  �9 No x is called an effect i f f  <-- 
t for some t �9 ~'. Condition (El)  states that every outcome occurs for some 
test and Condition (E2) states that two different tests are not redundant. 

Denote by f0 �9 N0 x the functionf0(x) = 0 for all x �9 X. By (El )  there 
exists a t E ~ such that t r f0, and since fo --- t, it follows from (E2) that 
f0 ~ ~-- We denote the set of  effects by %(X, ~) .  We also use the notation 
%(X) or % if ~ or (X, ~-) are understood. It is clear that f0 �9 % and f ^  g �9 
% whenever f g �9 %. However, f v g need not be in % for f g e %. For 
f E %, we define 

S ( f )  = {x �9 X: f ( x )  :/: O} 

An e f f e c t f i s  sharp in t E ~- if f----- t andf (x)  = t (x)  for all x �9 S ( f )  and 
f i s  globally sharp if for every t �9 ~ - , f ^  t is sharp in t. Notice that i f f i s  
globally sharp and f <- t, then f is sharp in t. 
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For t E ~-, we define %t = {f ~ % : f - -  t}. An indexed family f~ ~ %, 
ot E A, is compa t ib l e  iff,~ E %t, c~ ~ A, for  some  t ~ ~-. I f f~,  oL ~ A, are 
compatible,  then they can be per formed s imul taneously  by employing a single 
test. I f  f and g are compatible,  we w r i t e f o  g. Notice that f0 o f  for every 
f ~ % and that ~ is a symmetr ic  and ref lexive relation. An indexed family 
f~ ~ %, ~ ~ A, is or thogona l  if  Zf,, - t for  some t ~ ~-. It is clear that if 
(f~: c~ E A) is orthogonal,  then it is compat ible .  For f ~ %, we denote f + 
�9 .. + f (n summands)  by n f  We denote the characteristic function of  Y C X 
by Iy and use the notation Ix = IIx I. 

L e m m a  2.1. (a) F o r f  ~ %, t ~ ~-, we h a v e f o  t if and only i f f ~  t. 
(b) For s, t E ~', we have s ~, t if  and only if  s = t. (c) I f f o  g a n d f l  --< 
f gl ~ g, t hen f l  ~ gl. 

P r o o f  (a) I f f  < -- t, then f, t ~ %t, s o f  ~ t. Conversely,  i f f o  t, then 
there exists an s ~ ~- such that f t -< s. By  (E2), s = t, so f--< t. (b) This 
follows f rom (E2) and (a). (c) Since f ~ g, we  have  f g --  t for some t E 
~ .  Hence, f l ,  gl -- t, s o f l  ~ gl. �9 

Theorem 2.2. The fol lowing statements are equivalent.  (a) (f,~, a E A) 
is compatible.  (b) v f,~ <- t for  some t E ~-. (c) There  exists an orthogonal  
family (g~, 13 ~ B) such that f,~ = E(gg, 13 ~ B,, C B) for  every a ~ A. 

P r o o f  (a) = (b) I f  (f,~, o~ ~ A) is compat ible ,  then f,~ <- t, o~ E A, for 
some t ~ ~ .  Hence,  v f~ --  t. (b) = (c) Suppose  v f,~ --< t for t ~ ~'. Since t 
= E( t  (X)Ix, x ~ S (t)),  we conclude that (t (X)Ix, x ~ S (t)) is orthogonal.  Lett ing 

B = U {13~ . . . . .  13x: n = t(x),  13'[ = x ,  i = 1 . . . . .  n} 
x~S(t) 

then (I~: 13 ~ B) is orthogonal.  For  any a ~ A, letting 

B~ = U {13~ . . . . .  13X: m = f~ (x ) }  C B 
xeS(f~) 

we have that 

f,~ = ~ (I~, 13 ~ B,~ C: B) 

(c) ~ (a) Since (g~: 13 E B) is orthogonal,  there exists a t ~ ~ such that Y'gl~ 
-< t. Then for any a ~ A we have 

f~ = ~ (g~, 13 ~ B ~ C B ) < - - ~ g ~ < - t  

so (f,~, a ~ A) is compatible.  �9 

3. OBSERVABLES 

We have seen that an effect corresponds to a y e s - n o  measurement  that 
may be unsharp. We now consider general  measurements  that can have more  
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than two values. The Borel tr-algebra on R is denoted by ~(R) .  An observable 
on (X, ~ )  is a mapping F: ~(R)  --* % that satisfies: 

(O1) F(R) E ~ .  
(02) I fAi  ~ ~(R) ,  i e N, are mutually disjoint, then F(UAi) = EF(Ai), 

where the summation converges pointwise. 

Thus, an observable can be thought of as a collection of  effects that satisfies 
the regularity conditions (O1) and (02). For A e ~(R),  we interpret F(A) 
as the effect that is observed when F has a value in A. Hence, F(A) corresponds 
to the yes-no question: "Does F have a value in A when the measurement 
F is performed?" 

Lemma 3.1. Let F be an observable on (X, ~-) such that F(R) = t. (a) 
F(O) = f0. (b) If A C_ B, then F(A) <- F(B) and F(B) = F(A) + F(B\A).  (c) 
For every A E ~(R) ,  F(A) ~ %t so (F(A): A ~ ~(R))  is compatible. (d) If 
A, i E N, are mutually disjoint, then (F(Ai), i E N) is orthogonal. (e) 
F(A U B) = F(A) + F(B) - F(A n B). (f) If Ai E ~(R)  is a decreasing 
(increasing) sequence, then lim F(Ai) = F ( n  Ai) (F(UAi)) pointwise. 

Proof  (a) Since 

F(O) + F(R) = F(O U R) = F(R) 

we conclude that F(O)  = fo. (b) Since B = A U (B\A) and A n (B\A) = 
O, we have F(B) = F(A) + F(B\A) and F(A) <-- F(B). (c) Applying (b), we 
have F(A) <- F(R) = t for every A ~ ~ (R). (d) Since 

F(Ai) = F(UAi) <- t 

we conclude that (F(Ai), i ~ N) is orthogonal. (e) Since 

A U B  = ( A \ A  A B )  U ( B \ A  N B )  O (A A B )  

and the terms on the right side are mutually disjoint, it follows from (b) that 

F(A U B) = F(AL4 O B) + F(BL4 n B) + F(A O B) 

= F(A) + F(B) - F(A O B) 

(f) For x E S(t), define m: ~(R)  ~ R by m (A) = F(A)(x). Then 0 - m (A) 
<-- t(x) and i f A i  E ~(R)  are mutually disjoint, we have 

m(UAi)  = F(UAi)(x) = ~ F(Ai)(x) = ~ m(Ai) 

Hence, m is a bounded measure on ~(R).  If Ai ~ ~(R)  is a decreasing 
sequence, it follows from the monotone convergence theorem for bounded 
measures that 

lira F(Ai)(x) -- lim m(Ai) = m ( n A i )  = F(nAi) (x)  
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A similar result holds for increasing sequences. �9 

Two observables F and G are compatible (written F ~ G) if F(R) = 
G(R). Notice that '--' is an equivalence relation for observables. If F is an 
observable and u: R ~ R is a Borel function, we define the observable u (F): 
~ (R)  ~ % by u(F)(A) = F (u-~(A)). 

Lemma 3.2. (a) F ~ G if and only if F(A) ~ F(B) for all A, B e ~(R) .  
(b) If F = u (H), G = v(H), then F ~ G, F ~ H, G ~ H. 

Proof. (a) If F ~ G, then by Lemma 3.1 (b) we have 

F(A), G(B) <- F(R) e 3 

so that F(A) ~ G(B). Conversely, if F(A) ~, G(B) for every A, B ~ ~(R) ,  
then F(R) ~ G(R). Applying Lemma 2.1 (b), we have F(R) = G(R), so that 
F ~ G. (b) Since 

F(R) = H(u-'(R)) = H(R) = H(v-l(R)) = G(R) 

the result follows. �9 

If F({ h }) :~ f0, then h is an eigenvalue of F and F({ h }) is the correspond- 
ing eigeneffect. An eigenvalue is a value that F can attain and the correspond- 
ing eigeneffect is observed when F has that value. We denote the set of 
eigenvalues of F by O-p(F) and call trp(F) the point  spectrum of F. In general, 
O'e(F) need not be a Borel set. For example, let X C R be a nonmeasurable 
set and let 3" = {Ix}. Define F: ~(R)  --+ %(X, 3") by F(A) = lanx. Then F 
is an observable with Crp(F) = X. The same procedure shows that any subset 
of R is the point spectrum of  some observable. The next result shows that an 
observable is determined by its eigenvalues and eigeneffects. An observable F 
is atomic if for every A e ~(R)  we have 

F(A) = ~ (F({k}): k E A f-) (rp(F)) (3.1) 

Theorem 3.3. Every observable is atomic. 

Proof. Let F be an observable on (X, 3") with F(R) = t e 3". Let [al, 
bl] C R be a closed interval, x E X, and suppose that F([al, bl]) (x) ~ 0. 
I fc l  is the midpoint of [al, bl], then either F([al, cl])(x) :/: 0 or F([cb bl])(x) 
:/: 0. Continuing this process, we obtain a decreasing sequence of  closed 
intervals [ai, bi] such that lim (bi - ai) = 0 and F ([ai, bi])(x) >- 1, i = 1, 
2 . . . . .  Since R is complete, A [ai, bi] = h E R, and it follows from Lemma 
3.1 (f) that 

F({h})(x) = lim F([ai, bi])(x) >-- 1 

If A E ~(R)  has the property that F(A)(x) --/: 0 implies that there exists a h 
A such that F({h})(x) :~ 0, we say thatA is F-atomic. We have thus shown 



Effect Test Spaces 2687 

that any closed interval is F-atomic. Since R = U[i, i + 1], i ~ Z, it follows 
that R is F-atomic. Since any open interval (a, b) C_ R is the union of an 
increasing sequence of closed intervals, it follows from Lemma 3.1(f) that 
(a, b) is F-atomic. I f x  ~ S(t) ,  then F(R)(x) = t (x)  4: O. Hence, there exists 
a kl ~ R such that F({~l})(x) 4: 0. If F({~q})(x) 4: t(x), then 

F(R\{~kl})(x ) = t (x)  - F({X,})(x) 4 :0  

Since R\{~q} is the union of two open intervals, there exists a k2 e R\{~q} 
such that F({Xz})(x) 4: O. If 

F({X,})(x) + V({X2})(x) 4: t(x) 

this same procedure gives a ~3 e R\{kl,  k2} such that F({k3})(x) 4: 0. 
Continuing this process, there exists a finite set 

s~ = {x, . . . . .  x.} c_ R 

such that F({Xi})(x) 4: O, i = 1 . . . . .  n, and EF({Xi})(x)  = t(x). 
If A E ~(R),  we have 

r (a ) (x )  >-- Y~ (F({X})(x): k ~ a n S~) 

Suppose that 

F(A)(x) > ~ (F({k})(x): ~ e A n Sx) 

We would then have 

t(x) = F ( A  U AO(x)  = F(A)(x)  + F(Ar 

~ (F({k})(x): ~ ~ A n S~) + ~ (F([~})(x): ~ ~ A ~ n Sx) = t(x) 

which is a contradiction. We conclude that 

F(A)(x)  = ~ (F({~})(x): ~ ~ A n S~) 

so (3.1) holds. �9 

We now give a connection between effects and observables as defined 
here and Hilbert space effects and observables. For t E ~-, form the Hilbert 
space with its usual inner product 

H, = ( , :  s ( o  -~ c:  ~ I~,(x)F < ~} 

F o r f  ~ %t, define the bounded linear operator j~ on /4, by 

(j~)(x) f ( x )  ~(x) 
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and for an observable F satisfying F(R)  = t define F(A) = [F(A)I  ̂  for all 
A ~ ~ (R) .  It is clear t h a t f i s  a positive operator satisfying 0 <--3~-- < / .  Such 
operators are Hilbert  space effects (Cattaneo and Giuntini, 1995; Foulis and 
Bennett, 1994; Greechie  and Foulis, 1995). We shall show that P is aposi t ive  
operator-valued (POV) measure and these are Hilbert  space observables.  

Theorem 3.4. ( a ) f  E %, is sharp if and only if f is a projection. (b) If 
F (R)  = t, then P is a POV measure on Ht. 

Proo f  (a) I f f  E ~t is sharp, then 

( f , ) ( x )  = Is(f)(x)*(x) 

so )~ is a projection. Conversely, if 3 ~ is a projection, then f2 = ~, so that 
( f / t )  2 = f / t .  This implies t ha t f ( x ) / t ( x )  is 0 or 1 for every x E S(t) .  Hence,  

f ( x )  = t(x)  for  every x ~ S ( f ) ,  s o f i s  sharp. 
(b) Since P(R) = ~ = L P is normalized. Suppose that Ai E ~ ( R )  are 

mutually disjoint, i = 1, 2 . . . . .  Then for a n y ,  e Ht and n E N we have 

i=~l (--Ul)]2 an = F(Ai)* - P Ai * 
i 

= ~ F(Ai)^(x) - F U_ A i (x) *(x)  
x e S ( t )  i = 1  i 1 

i=l ~ (~ 12 1 
_ F(Ai)(x) - F 

x E s ( o  

1 F U A; (x) I,(x)l  2 
x ~ S(t)  

S i n c e ,  ~ Hi, there exist a sequence xj ~ S(t)  such that , ( x )  = 0 for x :# 
xj, j = 1, 2 . . . . .  and 110115 = ~l ,(xj) l  2. Given an e > 0, there exists an N 
N such that ~=N+II*(xj)I 2 <--- ~.. 

Hence,  

an = ~ t~xj)2 F U A i ) I*(xj) j=l i = n + l  

--< �9 + J=l'~' ~ F i=n+lU Ai (xj) I*(xj)l 2 

Since F(Ai ) ( x )  ~ No and 

F Ai = F(Ai)(xj) 
i "2 
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there exists an M ~ N such that n --- M implies that 

F 12 Ai xj) = 0, j = 1 . . . . .  N 
i=n+l 

Hence, a ,  <-- �9 for n -> M, so that l i m a ,  = 0. It follows that P (12Ai) = 
EP(Ai), where the summation converges in the strong operator topology. �9 

Notice that Theorem 3.4 has limited scope. First, it carl only be applied 
to compatible observables. Second, there are Hilbert space observables on 
Ht that do not have the form P. For example, Theorem 3.3 shows that P 
must have pure point spectrum. Moreover, effects in the range of/~ commute 
and this need not hold for a general Hilbert space observable. 

4. SPECTRA OF OBSERVABLES 

We begin with a spectral mapping theorem for o-,(F). 

Theorem 4.1. If  F is an observable and u a Borel function, then trp(u (F)) 
= u(Crp(F)). 

Proof. If h ~ tre(u(F)), then u(F) ({X}) #:fo, so that F(u -I ({k})) 
fo. Applying Theorem 3.3, there exists an o t e  u - l ({h})  fq tre(F ). Since 
et ~ r and u (o0 = k, we have h E u (trp(F)). Conversely, suppose that 
k ~ u(crp(F)). Then there exists an a e trp(F) such that h = u (o0. Hence, 

u(F)({h}) = F(u-~({h}))  --> F({od)  r f0 

so that h ~ ~p(u (F)). We conclude that oro(u (F)) = u(trp(F)). �9 

Lemma 4.2. I f  F is an observable, then there exists a largest open set 
A such that F (A) = f0- 

Proof. Let As, g e A, be the collection of all open sets such that F (As) 
= fo and let A = UA~. [Notice that this collection is nonempty because F(Q~) 
= f0-] Since the topology of R is second countable, there exists a countable 
collection of open sets Bi, i e N, such that A = t.JBi and for every i E N 
there exists a g E A such that Bi C As. Since F(Bi) = fo for every i ~ N 
and, as is easily seen, F is subadditive, we have F(UT=IBi) = f0 for every 
n e N. Applying Lemma 3.1(d), we conclude that 

F(a) = lim f (  U=l Bi) = i 

Hence, A is the largest open set such that F(A) = fo. u 
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The complement A c of  the set A in Lemma 4.2 is called the spectrum 
of F and is denoted by or(F). I f  F(R) = t, it is clear that or(F) is the smallest 
closed set B such that F(B) = t. Even if S(t)  is countable, or(F) need not be 
countable. For example, let S(t)  = {xl, x2 . . . .  } be a countable set and let 
Q = { hi, h2 . . . .  } be the rationals. Define F({ hi}) = t (xi)l, i and for B ~ ~ ( R )  

F(B) = ~ F({hi}) 
ki~B 

Then F(A) --/= fo for any open set A, so that or(F) = R. 

Lemma 4.3. A number h is in or(F) if and only if for every open set A 
with h ~ A we have F(A)  ~ fo. 

Proof. Suppose h e or(F) and there exists an open set A with h �9 A 
and F(A) = fo. Then F(A c) = F(R) = t, so that 

F(or(F) O A ~) = F(or(E)) + F(A ~) - F(or(F) U A ~) = t 

But or(F) n A ~ is closed and h ~ or(F) n A C, so or(F) O A C is a proper 
subset of or(F). This is a contradiction. Conversely, suppose that h ~ or(F). 
Since or(F) is closed, there exists an open set A with h E A and A _C o-(F) c. 
Since F (or(F) ~) = f0, we have F(A) = fo. �9 

The next result gives the relationship between orp(F) and or(F) and 
extends the spectral mapping theorem to or(F). The closure of  a set A is 
denoted by A. 

Theorem 4.4. (a) or(F) = ore(F). (b) or(u (F)) C u (or(F)). (c) if u is 
continuous, then or(u (F)) = u (or(F)). (d) If  or(F) is bounded and u is continu- 
ous on or(F), then or(u (F)) = u(or(F)). 

Proof. (a) If  h �9 orp(F), then for any open set A with k e A we have 
F(A)  --/: fo. By Lemma 4.3, h e or(F), so that orp(F) C or(F). Since or(F) is 
closed, we have orp(F) C or(F). I f  h �9 or(F), then by Lemma 4.3, for any 
open set A with h �9 A we have F(A) ~ fo. Applying Theorem 3.3, we have 
A O orp(F) ~ f~. Hence, h �9 orp(F), so that or(F) C orp(F). (b) By Theorem 
4.1 and (a) we have 

or(u (F)) = orp(U (F))  = u (orp(F)) C u (or(F)) 

(c) If  h �9 or(F), then by (a), there exists a sequence hi �9 % ( F )  such that 
lim hi = h. Since u is continuous, lim u (hi) = u ( h ) .  Hence, u (h) e u (orp(F)), 
so that u(or(F)) C u (orp(F)). We then have 

u (or(F)) C_ u (orp(F)) = orp(u(F)) = or(u (F)) 

The result now follows f rom (b). (d) Since or(F) is bounded, or(F) is compact. 
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Since u is continuous on tr(F), u (tr(F)) is compact  and hence closed. Thus,  
u(tr(F)) = u(tr(F)) and the result follows f rom (c). �9 

5. U N I V E R S A L  O B S E R V A B L E S  

An observable F is a universal observable for t ~ 9- if F ( R )  = t and 
for any observable G such that G(R)  = t (i.e., G ~ F) ,  we have G = u ( F )  
for some Borel function u. It is clear that two universal observables for t are 
equivalent in the sense that each is a Borel function o f  the other. We shall 
show later that a test need not admit a universal observable. An observable 
F is a maximal  observable for t ~ ~- if F(R) = t and for any f ~ %t there 
exists an A ~ ~ ( R )  such that F(A) = f (i.e., the range o f  F is %t). 

Lemma 5.1. Any universal observable F for t is maximal.  

Proof  Given an f E St, let kl, k2 ~ R and define the observable G by  
G({kl})  = f,  G({h2}) = t - f ,  and for A ~ ~ (R). 

G(A) = ~ G({kj})  
hi~4 

Since F is universal for  t, there exists a Borel function u such that G = 
u (F).  Hence,  

F ( u - I ( { ~ l } ) )  = u(F)({hl} ) = G({~kl} ) = f  

and we conclude that F is maximal. �9 

We shall show later that the converse o f  L e m m a  5.1 does not hold. That  
is, a maximal  observable need not be universal. 

Theorem 5.2. Let  F be a maximal observable for t. Then for any x 
S(t)  there exists a k E O'p(F) such that F({k})  = Ix and for any o t e  trp(F) 
there exists a y ~ S (t) such that F ({ ot }) = rely for some m ~ N with m ----- t (y).  

Proof  Since F is maximal,  there exists a A e ~ ( R )  such that F(A)  = 
Ix. Applying Theorem 3.3, there exists a k ~ A fq trp(F). Since F({k})  ----- 
F(A) = Ix, we have F({h})  = Ix. This proves the first statement o f  the 
theorem. Again,  since F is maximal, there exists an A e 9~(R) such that 
F(A) = t(x)Ix. Applying  Theorem 3.3, there exist hi . . . . .  h ,  E A N o-v(F) 
such that EF({Xi}) = t(X)Ix. Now suppose ot ~ ~p(F) and F({a})(x)  :/: 0, 
F({et})(y) :~ 0, where x 4= y. Then in our previous notation et :/: hi, i = 1, 
. . . .  n. Letting B = {or, kl . . . . .  h,}, we have 

F(B)(x)  = F({ct})(x) + ~ F({ki})(x)  = F({ct})(x) + t(x) > t(x)  

which is a contradiction. Hence, F({t~}) = mly for some y ~ S(t)  and m 
N with m <-- t (y) .  �9 
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Notice that for a maximal  observab le  F, i f  h E crp(F), then it is not  
necessary  for F({h})  = Ix for some x E S(t) .  For  example ,  let X = {x} and 
t(x) = 3. Defining F({Kn }) = Ix, F({h2}) = 21x gives  a max ima l  observab le  
that is not universal ,  as the next theorem shows.  We denote  the card ina l i ty  
o f  a set A by  IA]. 

Theorem 5.3. Let  F be a universal  obse rvab le  for t. Then for  any x 
S(t)  there exists  a se tAx C_ typ(F) with IAxl = t(x) such that F ({h} )  = Ix for 
every  h E Ax and for any o~ ~ ~p(F) we have F({ct})  = ly for  some 
y E S(t) .  

Proof  For  x ~ S(t),  let n = t(x) and let hn . . . .  h,+n e R be distinct.  
Define the observable  G by G({hi}) = Ix, i = 1 . . . . .  n, G({h,+n})  = t - 
t(X)Ix, and for A ~ ~ ( R )  

G(A)  = ~ G({)ki}) 
hieA 

Since F is universal ,  there exists a Borel  funct ion u such that G = u (F).  Hence,  

F(u - l ( {X i } ) )  = G({hi} )  = Ix i = 1 . . . . .  n 

Apply ing  Theorem 3.3, there exist  unique ot i E lyp(F) such that et i ~ u -n({ hi }) 
and F({oti}) = Ix, i = 1 . . . . .  n. L e t A x  = {Ctl . . . . .  or,} g ive  this pos tu la ted  
set Ax. I f  et E ~p(F), then since F is max imal ,  we conc lude  f rom Theorem 
5.2 that F({ct}) = rely for some y ~ S(t)  and m E N with  m <-- t (y) .  I f  et 

Ay then 

F(Ay U {or}) = F(Ay) + F({c t})  = ( t (y )  + m)ly > t(y)ly 

Since this is a contradict ion,  we conc lude  that a E Ay so that F({ ct }) = ly. �9 

For  t e ~- let {Ax: x E S (t)} be a co l lec t ion  o f  mutua l ly  d is jo int  sets 
such that IAxl = t(x). We define the cardinality of  t to be Itl = ILl Axl. Notice  
that IS(t)l -< Itl and i f  IS(t)l is infinite, then IS(t)l = Itl. 

Corollary 5.4. (a) If  F is universal  for  t, then Icrp(F)l = Itl and i f  G is 
an observable  with G ( R )  = t, then Itrp(B)l -< Itl. (b) I f  t admi ts  a universal  
observable ,  then IS(t)I -< Itl -< IRI. (c) A test t admits  a ma x ima l  observable  
if  and only i f  IS ( / ) l -<  I l l -<  IRI. 

It is unknown whether  the converse  o f  Coro l la ry  5.4(b) holds.  However ,  
we shall  show that this converse  holds if  Itl is countable .  

Lemma 5.5. If  Itl <- INI and F ( R )  = G ( R )  = t, then there exists  a Borel  
i somorph i sm u: R ~ R such that (rp(U (G)) fq (7p(F) = ~ .  
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Proof By Corollary 5.4(a), Itrp(F)l, Icrp(G)l ~ INI. I f  A = trp(G) N 
Crp(F) = O,  we are finished, so suppose that A :~ • .  Then there exists a B 

~ ( R )  such that IBI = IAI and 

B n [crp(G) U trp(F)] = O 

Let v: A ~ B be a bijection and extend v to u: R ~ R by defining u (k) = 
v - l ( h )  for k e B and u(h)  = k for  k E (A U B)L Then u is a Borel 
i somorphism and by Theo rem 4.1, we have 

crp(u (G)) = u (trp(G)) = B U (trp(G)~v~) 

Hence, Crp(U (G)) n trp(F) = f~. I 

Theorem 5.6. I f  Itl <-- INI, then t admits  a universal observable  F, and 
F is unique to within a Borel  i somorphism.  

Proof. Let S(t) = {x(1), x (2)  . . . .  } and let A i C R, i E N, be mutual ly 
disjoint with IAil = t(x(i)). Define the observable  F by F({k})  = Ix(i) if 
k E A i and for any A ~ ~ ( R )  

F(A) = ~ F ( I X / )  
k ~  

Then crp(F) = U Ai and F(R)  = t. To show that F is universal  for  t, let G 
be an observable with G (R) = t. Applying  L e m m a  5.5, we can assume that 
o'p(F) N o-p(G) = O .  By Theo rem 3.3 and Corollary 5.4(a) there exists a 
countable set {c~ n, c~ 2 . . . .  } C_ R such that 

G(A) = ~ (G({ct/}): ct i ~ A) 

for every A ~ 5~(R). Define u: R ~ R as follows. I f  

G({oq})  = ~ nl(i)lx(i) 
iEll 

where nn(i) ~ 0, i E In C_ N,  choose k~ . . . . .  k7 ~('~ S Ai,  i ~ I1, and let 
u(h(i)) = eq, i e I b j ( i )  = 1 . . . . .  nl(i). Continue in this way for or2, making 
sure that the corresponding kj are distinct f rom those chosen for  a~, etc. Then 
u(h)  is defined for k ~ Crp(F) and for h ~ Crp(F), we define u (k )  = k. Then 
u is a Borel function and for  every  A ~ ~ ( R )  we have 

G(A) = ~ (G({Otk}): ot k E A) = ~ (F({k~(i)}): U(k~ (i)) : (lk, 0s k ~- A) 

= ~ (F({k(i)}):  k(i) ~ u- l (A ) )  = F ( u - l ( A ) )  = u(F)(A)  

Hence, G = u (F )  and F is a universal  for  t. 
To prove the uniqueness o f  F, let H be another  universal observable for 

t. Again by L e m m a  5.5, we  can assume that crp(F) n err(/-/) = Q~. By Theorem 
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5.3, there exist mutually disjoint sets Bi C R, i ~ N, such that trp(H) = 
U Bi, IBil = t (x( i ) ) ,  H({h}) = 14o if h e Bi and for every A e ~(R) ,  H ( A )  
= Y. (H({h}): h e A D trp(H). Let v: crp(F) ~ t r p ( H )  be a bijection satisfying 
v(Ai) = Bi, i ~ N, and extend v to u: R ~ R by defining u(h)  = v - l ( h )  for 
h E trp (H) and u (h) = h for h ~ (trp(F) U Crp(H)) c. Then u is a Borel 
isomorphism and for every A E ~ ( R )  we have 

H ( A )  = ~ (H({h}): X e A f3 trp(H)) 

= ~ (F(u-Z(h) ) :  u-l (X)  e u- I (A)  D ~p(F)) 

= F ( u - l ( A ) )  = u (F) (A)  

Hence, H = u ( F )  and it follows that F = u - l ( H ) .  �9 

Corollary 5.7. If  Itl --< INI and F, G are observables satisfying F(R) = 
G(R) = t, then there exists an observable H and Borel functions u, v such 
that F = u (G), G = v (H). 

We say that an E-test space (X, ~-) is separable if Itl --< INI for every 
t ~ ~-. The following corollary gives a direct reason why compatible observ- 
ables are simultaneously measurable. 

Corollary 5.8. Let F and G be observables on a separable E-test space 
(X, ~-). Then F ~ G if and only if there exists an observable H and Borel 
functions u, v such that F = u(H) ,  G = v (H) .  

6. O R T H O C O M P L E M E N T S  

This section discusses two types of  orthocomplements for an E-test 
space (X, ~-). These orthocomplements are local because they depend on the 
test being performed. F o r f  E % (X, ~-) and t E ~-, we define the Kleene (or 
diametrical)  or thocomplement  o f  f b y  f t = t - f A t. Notice t h a t f  t ~ % for 
e v e r y f  ~ %. 

L e m m a  6.1. (a) f~  = t, t t = f 0  ( b ) f  -< g implies g '  <--f'. ( c ) f "  = f A  
t and f "  = f i f  and only i f f  --- t. (d) f "  = f. (e) ( f A  g)t = f t  V g '. (f) I f f  
V g E % ( i . e . , f ~  g), then ( f v  g) '  = f '  A g ' .  

Proof. (a) is clear. (b) Iff--< g, then f A t ----- g A t, SO that t - g A t --< 
t -- f ^ t. Hence, g t <_ f t .  (c) We have 

f t , =  t -  ( t - - f A t )  A t =  t - -  ( t - - f A t )  = f A t  

and the next statement follows directly. (d) Applying (c) gives 

fttt = t - - f A t  = f t  
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(e) Since f ^  g ~ f ,  g, we have that ( f A  g)t > f t ,  gt. I f h  > f t ,  gt, then 

h t < f t t = f A t _ < f  

and similarly, h t <- g. Hence, h t < - f ^  g, so that 

h - - h A t = h ' > - - ( f A g ) t  

Hence, ( f ^  g)t = f t v  gt. (f) S i n c e f v  g - > f  g, we have that ( f v  g)t <__ 
f t .  I f h  ---ft, gt, then ht ~ftt = f ^  t and h'  ~ g A t. Hence, 

h t > - ( f A t )  v ( g ^ t )  = ( f v g )  A t  

Since h --< f i  ~ t, we have 

h = h A t =  h it<- [ ( f v g )  At] t =  ( f v g ) t  

Hence, ( f v  g)t = f t  A gt. �9 

Theorem 6.2. ( a ) f i s  sharp in t if and only if f<--- t a n d f A f  t = fo. (b) 
f i s  sharp in t if and only i f f v f l  --- t. (c) f i s  globally sharp if and only if 
f A f t  = 3~ for every t ~ 3.. (d) I f f v  f t  = t for every t E %, t h e n f i s  
globally sharp. 

Proof  (a) Suppose that f is sharp in t. Then f--< t and f A f t  = f A 
(t _ f t ) .  I f x  ~ S ( f ) ,  t h e n f  (x) = 0, so that ( f A f t ) ( x )  = 0. I f x  E S ( f ) ,  
then t(x) - f ( x )  = 0, so again ( f ^ f t ) ( x )  = 0. H e n c e , f ^ f '  = fo- Conversely, 
suppose that f -< t and f A f t  = f A (t -- f )  = fo. If  X e S (f), then f ( x )  :/: 
0, so that t(x) - f ( x )  = 0. Hence, f is sharp in t. (b) I f f i s  sharp in t, then 
f --< t and by (a), f A f t  = fo. Hence, f v f t  --- ( f  A f t ) '  = t. Conversely, 
suppose t h a t f v f '  = t. Then f----- t a n d f ^ f '  = ( f v f ' ) '  = j~ ,  so the result 
follows from (a). (c) If f is globally sharp, t h e n f  ^ t is sharp in t. S ince f  t 
--< t, we have by (a) that 

f A f  t = f A  ( f t  A t) = ( f A  t) A f  t = ( f A  t) A ( f A  t) t =f0  

Conversely, suppose that f A f '  = J~ for every t e 3-. Then for any 
t E 3., we have 

( f A  t) A ( f A t ) '  = ( f A  t) A f  t = f ^  ( f~ A t) = f A f  t = f 0  

Applying (a) gives that f ^ t is sharp in t. Hence, f is globally sharp. 
(d) I f  f v f t = t, then f A f t = ( f  v f t )  t =f0. The result now follows from (c). �9 

For f ~ % (X, 3.), t E 3., we define the Brouwer (or intuitionistic) 
orthocomplement o f f b y f t  = tlso~c. Notice thatft E % for e v e r y f  e %. 

Lemma 6.3. (a) for = t, tt = fo. (b) gt <- ft if and only if S( t )  A S(g)  c 
C_ S(t)  f'l S ( f )  c. (c)f---- g implies gt <-ft. (d) ( f ^  t)t = f t .  ( e ) f A f t  =f0.  
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(f)  fit = tls(f). (g) fit -> f A t and ftt -> f i f  and only if f --< t. (h) fttt = ft- (i) 
( f A  g)t = f t  V gt. (J) I f f v  g ~ ~ ( i . e . , f o  g), then ( f v  g)t = f t  A gt. 

Proof.  (a) is clear. (b) I f  gt <- ft, then S(g t )  C_ S ( f t ) .  Hence,  S ( g )  c C 
S ( f )  c and the result follows. Conversely,  suppose that S( t )  O S ( g )  c C S( t )  
O S (f)c. We then have 

S(gt)  = S ( t )  n S(g)C C S ( t )  n S ( f )  c = S ( f t )  

Hence,  if  x e S (gt), we have x ~ S (ft) and gt(x)  : t (X) : f t ( x ) -  Also, if x 
~t S(gt) ,  then gt(x) = 0 -< ft(x). We conclude that gt <- ft .  (c) I f f  <- g, then 

S ( f )  C S(g) ,  so that S ( g )  ~ C_ S (f)~.  The result now fol lows f rom (b). (d) 
Since S(t) n s ( f )  ~ = s ( t )  n S ( f  ^ t) c, the result fol lows f rom (b). (e) If  

f ( x )  = 0, then ( f  ^ ft)(x) = 0 and if f (x) v s 0, then ft(x) = 0, so that 
( f  ^ ft)(x) = 0. Hence,  f ^ ft = f0. (f) I f  x e S ( f ) ,  then x ~ S (ft)c, so that 

f t t(x) = t (x) .  Suppose that x e S ( f ) c .  Then ft(x) = t (x ) .  I f  t ( x )  4: O, then x 
S (ft), so that f t t(x) = 0. I f  t (x) = 0, then x e S (ft)c, so that f t t(x) = t(x) 

= 0. The result now follows. (g) I f x  ~ S ( f ) ,  thenftt(x) = t ( x )  >- ( f ^  t)(x). 
I f x  e S ( f )  c, then ft/(x) = 0 = ( f ^  t)(x).  Hence,  ft, - - > f ^  t. I f  f - -  < t, then 
f = f ^ t -< ftt- The converse follows because  ftt -< t. (h) From (c), (d), and 
(g) we have fttt --< ( f  ^ t)t = ft. Since ft --< t, we have f rom (g) that ftu >- ft. 
(i) Suppose tha t f (x )  -< g (x). I f f ( x )  = 0, thenft(x)  = t (x ) ,  so that (ft v gt)(x) 
= t (x )  and ( f ^  g)(x)  = 0, so that ( f ^  g)t(x)  = t(x). I f f ( x )  ~ 0, then g ( x )  
:/: 0, so that ft(x) = gt(x) = 0. Hence,  (ft v gt)(x) = 0 and ( f  A g)(x)  4: O, 
SO that ( f  v g)t(x) = 0. A similar result holds if  g (x) <-- f ( x )  and the result 
follows. (j) Since f ,  g --> f V g, we have ( f  v g)t <- ft, gt. Suppose that h -< 
f t ,  gt. Then h t >-- ftt  ~" f ^ t and ht >-- gtt >-- g A t. Hence,  

ht >-- ( f  A t) V (g A t) = ( f  v g)  A t 

The result now follows because 

h = h ^ t < - h t t < -  [ ( f v g )  At] t  = ( f v g ) t  �9 

Theorem 6.4. (a ) f t  -< f t .  (b)ft t  = (ft)t. ( c ) f t  is sharp in t. (d)f t t  is the 
smallest  sharp e lement  in %t such thatftt  -----f^ t. (e) ( f ' ) t  is the largest sharp 
element in %t such that ( f l ) t  <-- f ^  t. The fol lowing statements are equivalent: 
f i s  sharp in t , f  = f t t ,  f = ( f ' ) t , f  <- t, a n d f  t = ft. (g) The fol lowing statements 
are equivalent: f is globally sharp, ftt = f A t for every t ~ 3-, f t  = ft for 
every t E 3 .  

Proof.  (a) I f f t (x)  = 0, thenf t (x)  <--ft(x).  I f f t (x)  :~ 0, then x ~ S ( t )  n 
S ( f )  c andft(x) = t ( x )  = f t ( x ) .  (b) Applying  L e m m a  6.3(0,  we have 

(ft)t = t - f t  = t - tls(f)c = t(1 - I s (H)  = tlsoo = f t t  
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(C) As in (a), ifft(x) ~ 0, then ft(x) = t(x). (d) By (c), f ,  is sharp in t and 
by Lemma 6.3(g), ft, ~ f A t. Suppose that h is sharp in t and f A t --< h. If 
ft,(x) ~ 0, then by Lemma 6.3(f), x e S (t) n s (f) .  Hence, ( f  ^ t) (x) v~ 0, 
so that h (x) = t (x) = ft,(x). Thus, ftt <- h and the result follows. (e) By (a) 
and Lemma 6,1(c) we have (fl), ---f" = f ^  t and by (c), ( f ' ) ,  is sharp in t. 
Suppose that h is sharp in t and h -< f ^ t. If h (x) v ~ 0, then h (x) = t (x), so 
that ( f  ^ t)(x) = t(x) andf(x)  = t(x). Hence, f ' (x )  = 0, so that 

(ft)t(x) = t(x) = h(x) 

Hence, h <-- ( f t ) t  and the result follows. (f) This follow from (d), (e), and 
the fact tha t f i s  sharp in t if and only i f f  ~ t and t - f  = ft. (g) This follows 
from (d) and (f). �9 

Denote the sharp elements in %, by 9O,. The next result shows that S ~ is 
a classical structure. 

Corollary 6.5. (9O,, <-, ') is a complete atomic Boolean algebra that is 
isomorphic to 2 s(t). 

Proof If f,  g e 9Or, then c lea r ly f  A g a n d f v  g e 9O,, so that (9ot, ~ )  
is a distributive lattice. If f e 9O,, then by Theorem 6.4(f), f t  = ft ~ 9O,. 
Moreover, by Lemmas 6.1 and 6.3 we have fr, = f,  f ___ g implies g ' --< f ' ,  
and f ^ f '  = f0 for all f, g e 9~ Hence, (9O,, -<, ') is a Boolean algebra that 
is clearly complete. I f f  e 9oi andf(x)  :~ 0, then t(x)Ix is an atom in 9O, and 
t(x)Ix <-f, so that (9O,, ---, t) is atomic. It is evident that the mapping s 9Ot 

2 su) given by ~b(f) = S ( f )  is an isomorphism. �9 

7. The  Operat ion Ot 

We now define a natural local sum on 9O (X, ~-). For t e ~ ,  define the 
binary operation Ot: % x % ~ % by f Ot g = ( f  + g) ^ t. 

Lemma 7.1. (a) f O,g = g O, f (b) f 0 ,  f0 = f A t. (C) f O t t  = t. (d) f 
G i f t  = t. (e) ( f  A t) G, (g A t) = f Ot g. (f) f Dt (g O, h) = ( f  Ot g) O, h. 

Proof (a)-(c) are clear. (d) First note that 

f O t f  t = ( f  + t - - f A t )  A t  

I f f ( x )  --< t(x) or i f f (x)  > t(x), then the right side of the previous equation 
equals t(x). (e) i f f (x)  + g(x) <- t(x), we have 

( f  G, g)(x) = [f(x) + g(x)] ^ t(x) = f (x )  + g(x) 

= f (x )  A t(x) + g (X) ^ t(x) 

= [ ( f A t  + g A t) A t](x) = [ ( fA  t) Gt (g A t)](X) 
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Now suppose that f (x )  + g (x) > t (x). Then ( f  Ot g)(x) = t (x). 

Case 1. If f (x )  :~ t(x) or g (x) >-- t(x), we have ( f  ^ t + g A t)(x) >-- 
t(x), SO that 

[(fA t) O, (g A t)](X) = t(X) 

Case 2. Iff(x)  < t(x) and g(x) < t(x), then ( f A  t + g A t)(x) = f (x )  
+ g (X), SO again the equation in Case 1 holds. (f) Applying (e), we have 

f ~ t ( g O t h )  = [f  + (g + h) A t ] A t =  [ f A t +  (g + h) A t ] A t  

= ( f + g + h )  At  = [ ( f + g )  A t + h A t ] A t  

= [ ( f + g )  A t + h ] A t  = ( f ~ ) t g ) ~ t h  �9 

Examples can be given which show that the multivalued logic condition 
(Chang, 1957, 1958) 

(MV) (3" Ot g)' ~ tg  = ( f  ~ t  gt)t ~ t  f 

the quantum condition (Giuntini, n.d.; Gudder, 1995) 

(QI) f Ot g 4: t implies [g 0 ,  ( f  Gig)']' = f 

and the quasi-linear condition (Giuntini, 1995; Gudder, 1995) 

(QL) f ~ ,  g 4= t implies f < t - g 

do not hold. However, (QI) and (QL) hold pointwise. 

Lemma 7.2. (a) ( f  ~ ,  g) (x) --/: t(x) implies [g ~ ,  ( f  ~ t  g)t]'(x) f (x) .  (b) 
( f ~ t  g) (x) = t(x) implies [g ~t  ( f O ,  g)t]'(x) = g'(x). (c) ( f  Gtg)(x) q: t(x) 
implies f (x )  < t (x) - g (x). 

Proof Let h = lg ~t ( f  ~t g)t]to We then have 

h = [ g G t ( t -  ( f + g )  A t ) ] ' =  t - -  [g + ( t - -  ( f + g )  A t ) ] A t  

(a) If ( f ~ ,  g)(x) 4: t(x), thenf(x) + g(x) < t(x). Hence, 

h (x) = t (x) - [g (x) + (t (x) - f (x )  - g (x))] A t (X) = f (x )  

(b) If ( f  O, g)(x) = t (x), then f (x )  + g (x) ~ t (x). Hence, 

h(x) = t(x) - [g(x) + (t(x) - /(x))] A t(X) = gt(x) 

(C) If ( f  Ot g)(x) 4: t (X), then [f(x) + g (x)] A t (X) 4: t (X), SO that f (x )  
+ g (x) < t(x). Hence, f (x )  < t(x) - g (x). �9 

We define the dual operation (Giuntini, 1995, n .d.)fQt  g = ( f '  @t gt)t 
and the operations (Giuntini, 1995, n.d.) 
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f i--it g = ( f  @, g t) (3t g 

f ii i g = ( f  (3, gt) ~ ,  g 

Theorem 7.3. (a) f ( 3 t g  = ( f A t  + g A t -  t) v f o . ( b ) f M t g  = f A g  
At. (c) f L l t g  = ( f v g )  At. 

Proo f  (a) By definition, we have 

f ( 3 ,  g = t -  [ ( t - f A t )  + ( t - g A t ) ] ^ t  

If f ( x )  > t(x),  then both expressions in the statement (a) equal 
(g ^ t)(x). I fg  (x) > t(x),  then both expressions equal ( f ^  t)(x). Now suppose 
that f (x) ,  g (x) <-- t (x). 

Case 1. I f f (x )  + g(x )  >- t(x),  then 

[ ( f ^  t + g ^ t - t) vfo](X) = f ( x )  + g(x)  - t (x)  

and 

( f ( 3 ,  g)(x) = t (x)  -- [2t(x) - - f ( x )  - g(x)] ^ t (x)  = f ( x )  + g(x)  -- t (x)  

Case 2. I f f (x )  + g(x )  <-- t(x), then 

[ ( f ^  t + g ^ t - t) vj~] = 0 = ( f ( 3 ,  g)(x) 

(b) If g (x) >- t(x),  then by (a) we have 

( f  VI, g)(x) = ( f  (3, g)(x) = ( f  ^ t)(x) = ( f  ^ g ^ t)(x) 

If g (x) --< t (x), then by (a) we have 

( f n ,  g)(x) = {I f@,  (t - g)] (3, g}(x) = {[(t + f -  g) ^ t] (3, g}(x) 

= {[(t + f -  g) ^ t + g - t] vf0}(x ) 

Case 1. I f f ( x )  --< g(x) ,  then t (x)  + f ( x )  - g (x )  <- t(x)~ so that 

( f  r'l, g)(x) = f ( x )  = ( f  ^ g ^ t)(x) 

Case 2. I f f (x )  ----- g(x) ,  then t (x)  + f ( x )  - g (x )  >- t(x),  so that 

( f  I-It g)(x) = g (x) = ( f  ^ g ^ t)(x) 

(c) If g(x)  >-- t(x),  then by (a) we have 

(ft-Jt g)(x) = (g ^ t)(x) = t(x)  = [ ( f v  g) ^ t](x) 
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If g (X) <- t(x), then by (a) we have 

(ftAt g)(x) = { [ fQt  (t - g)] Ot g}(x) = [ ( f A t  -- g) V f0 + g](x) 

Case 1. If f (x) --- g (x), then 

( f u r  g)(x) = g(x) = [ ( f v  g) A t](x) 

Case 2. I f f (x )  -> g (x), then 

( fUr  g)(x) = ( f A  t)(X) = [ ( f v  g) A tl(x) �9 

Notice that in Theorem 7.3(c), f v g need not be in %. However, ( f  v 
g) n t e %, SO the result makes sense. 

Corollary 7.4. ( a ) f n ,  g = g n , f ,  f t a ,  g = g tA, f.  (b) ( f n ,  g)' = f t  ut 
gt, ( f  Ut g)t = f ,  n t  gt. (c) ( f  Q)t g)t = f t  Ot g', ( f  (~t g)t = f t  Qt gt. 

Proof Part (a) follows from Theorem 7.3(b), (c). (b) Applying Theorem 
7.3(b), (c) and Lemma 6.1(e), we have 

( f iqt  g)t = ( f A  g A t) t = ( f  A g)t = f t  v gt = ( f t  V gt) A t = f t  ii t gt 

Similarly, we have (where again f v g need not be in %) 

( f  tA t g)t = [ ( f  v g) A t]' = ( f  V g)t = f ,  A gt = f ,  A gt A t = f t  II t g t 

(C) Applying Lemma 6.1(c) and Lemma 7.1(e), we have 

( f  Qt g)t = ( f t  (~t gt)tt = ( f t  Ot gt) A t = f '  Gt gt 

( f  Oi g) t = ( f A  t Ot g A t) t = ( f t t  Ot gtt)t = f t  Q)t gt �9 

The next result shows that the QMV axioms (Giuntini, 1995, n.d.; 
Gudder, 1995) hold. 

Corollary Z5. (a)flAt (g Dr f )  = f ^  t. (b) ( f D t  g) F1, h = (fl-lt g) ['qt 
(g I-] t h). (c) f Ot [g Nt ( f  Ot h) t] = ( f  ~ t  g) [~t I f  (~t ( f  Ot h)t]. (d) f ~ t  
( f t  Fit g) = f Ot g. (e) (f t  Gt g) tat (gt Or f )  = t. 

Proof (a) Applying Theorem 7.3(b), (c) gives 

f tAt (g Dr f )  = f L i t  (g ^ f A  t) = [ f v  (g A f A  t)] A t = f A  t 

(b) By Theorem 7.3(b), we have 

( fDt  g) 17, (g f-It h) = ( f A g  A t) A (g A h A t) = f A  g A h A t = ( fDt  g) I-It h 
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(c) If g (x) <- ( f O r  h)t(x), then both sides of  the equation evaluated at x equal 
( f  Ot g)(x). If g (x) >- ( f  Ot h)t(x), then both sides of the equation evaluated 
at x equal I f  Or ( f G t  h)]t(x). (d) By Theorem 7.3(b), we have 

f 0 ,  ( f t  i-it g) = f O t  ( f t  ^ g) = ( f  + f ,  A g) ^ t 

I f f t ( x )  >-- g (X), then the right side becomes 

[ ( f  + g) ^ t](x) = ( f  Ot g)(x) 

Iff t(x)  -- g(x),  then t(x) <--f(x) + g(x)  and the right side becomes 

[ ( f  + 3 " ) ^  t](x) = [ ( f  + t -  f ^  t ) ^  t](x) = t(x) = ( f O r  g)(x) 

(e) By Theorem 7.3(c), we have 

(3" ~]~t g) Lit (gt Or f )  = (t -- f ^  t + g) ^ t t-It (t -- g ^ t + f )  ^ t 

= [ ( t - - f A t  + g )  A t ] V [ ( t - - g ^ t + f ) A t ]  

If (g ^ t)(X) <-- ( f  ^ t)(x), then 

t(x) - ( f  ^ t)(x) + g (x) >-- t (x) - ( f  ^ t)(x) + (g ^ t)(x) >-- t(x) 

Hence, the right side evaluated at x equals t(x). The same result holds if 
( f  A t)(X) >-- (g ^ t)(x). �9 

The next two corollaries follow from our previous work. 

Corollary 7.6. For any t ~ 3-, (%t, Or, t, f0) is an MV-algebra (Chang, 
1957, 1958). That is, (a) ( f O r  g) Ot h = (g Ot h) G t f  ( b ) f O ,  f0 = f. (c) 

f G  fto = 3"o. (d)J at = f. (e) (3" Gt g)t Ot g = ( f O r  gt)t O t f .  

Corollary 7.7. For any t E ~-, (%t, v, ^, ', t, fo) is a distributive BZ ~ -  
lattice (Cattaneo and Nistic6, 1989). That is, %t is a distributive lattice with 
smallest element fo that satisfies: (a) jet = f (b) ( f  v g)t = 3" ^ g ( ( c )  f ^ f~ 
< g v gt. ( d ) f A f t  = f  (e) ( f v  g)t = f t  A gt. ( f ) f A f t  =f0- (g) (f)t  = f t .  
(h) ( f  ^ g)t = f t v  gt. 

It is easy to verify thatft O f ,  = t and f O r ,  = ft- These two properties 
and the previous two corollaries give the following result. 

Corollary 7.8. For any t ~ 3-, (%t, Or, t, t, f0) is an MVBZea-algebra 
(Cattaneo et al., n.d.). 

8. THE SASAKI MAPPING 

For a test t ~ ~-, we define the Sasaki mapping ~bt: % X % -o % by 

dpt(f, g) = f _ f ^ g t 

The counterpart of d~t in previous orthostructures has been quite useful and 
important (Bennett and Foulis, 1995). 
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L e m m a  8.1. (a) 6t(f, g) = f i f  and only if f ^  g '  = fo. (b) 6t(f, g) = g 
implies g <--- f .  (c) ~bt(f, fo) = fo if and only i f f  -< t. (d) dp,(f, t) = f .  (e) ~b,(t, 
f )  = f ^ t. (f) g --< h implies ~b,(f g) -< ~bt( f, h). 

P r o o f  (a) dpt( f, g) = f i f  and only i f f -  f ^  g '  = f a n d  this is equivalent 
to f ^  gt  =fo -  (b) If  ~b,(f, g)  = g, t h e n f - f ^  g '  = g, so t h a t g  --<f. (c) 
d~t(f, fo) = fo if and only i f f  = f ^ t which is equivalent to f ~ t. (d) ~b,(f, 
t) = f - ( f  ^ fo) = f (e) We have 

~ t ( t , f )  = t -  ( t A f t ) =  t - f t  = f ^ t 

(f) If  g --< h, then h '  --< g t, so that f A h '  <-- f ^ gt. Hence, 

dpt(f, g)  = f - f ^ g'  <- f - f A h '  = +,( f ,  h) �9 

T h e o r e m  8.2. We have dpt(f g) = ~b,(g, f )  if and only if for x E X either 
f ( x ) ,  g (x) <- t (x)  or f ( x )  = g (x). 

P r o o f  If  f (x) = g (x), then, clearly, t k , ( f  g)(x)  = d~,(g, f ) ( x ) .  Suppose 
that f ( x ) ,  g (x) <-- t (x ) .  We then have 

6 , ( f ,  g) (x)  = f ( x )  - f ( x )  A [t (X) -- (g ^ t)(x)l 

= f ( x )  -- f ( x )  ^ [t(x) -- g(x)] 

Case  1. I f f ( x )  + g ( x )  <-- t (x ) ,  then ~b,(f, g)(x)  = O. 

Case  2. I f f ( x )  + g ( x )  >- t (x) ,  then 

tkt( f ,  g)(x)  = f ( x )  + g (x) - t ( x )  

In either Case 1 or Case 2, we have ~b,(f, g)(x)  = r 3')(x). 
Conversely, suppose that d~t(f, g) = d~t(g, 39. Assume that f (x)  > t ( x )  

and g (x) ----- t (x). We then have 

dpt(f, g) (x)  = f ( x )  - g t(x) 

~ , ( g , f ) ( x )  = g ( x )  - g ( x )  ^ [ / (x)  - f ( x )  ^ t (x ) ]  = g ( x )  

Hence, f ( x )  = g ( x )  + gt (x)  = t (x) ,  which is a contradiction. Thus, either 
f ( x ) ,  g ( x )  > t ( x )  or f(x) ,  g ( x )  <- t (x) .  Suppose that f(x) ,  g ( x )  > t (x ) .  We 
then have 

r g)(x)  = f ( x )  - g'(x) = f ( x )  

dpt(g, f ) ( x )  = g (x) - f ' ( x )  = g (x) 

Hence, f ( x )  = g (x). It 
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Corollary 8.3. (a) I f f (x )  4: g (x) for every x ~ X and d~,(f g) = +t(g, 
f ) ,  then f g ~ %t. (b) I f f  g ~ %t, then +t(f  g) = +t(g, f ) .  

Lemma 8.4. For all t E ~-, f ~ %, we have 

0 if f ( x )  <- �89 (x) 

~b,(f,f)(x) = 2f(x) - t(x) if �89 <-- f ( x )  <-- t(x) 

f (x )  if  t(x) <-- f ( x )  

Proof  Simple verification. �9 

We say that an E-test space (X, ~-) is classical if I~1 = 1. 

Theorem 8.5. The following statements are equivalent. (a) (X, ~-) is 
classical. (b) There exists a t ~ ~ such that d p t ( f  g) = ~)t(g,  f )  for every f 
g E %. (c) f ^ g = f0 implies f J_ g. (d) There exists a t e ~ such that for 
every f g E % we have 

d~t(f, g) = [ft Dt ( f  ^ g t)], 

Proof We shall show that (a) ~ (b) ~ (c) ~ (a) and that (a) r (d). 
(a) ~ (b) follows from Corollary 8.3(b). (b) ~ (c). Suppose that (l)t(f g) = 
d~t(g, f )  for e v e r y f  g ~ % and that f ^  g = fo. I f f ( x )  = g(x),  thenf (x)  = 
g(x)  = 0, so thatf(x)  + g(x) <- t(x). I f f ( x )  4: g(x), then by Theorem 8.2, 
f g ~ %t- Since f ^  g = f o ,  we conclude tha t f (x )  + g(x)  <-- t(x). Hence, 
f L g. (c) ~ (a). Assume that (c) holds and t E ~-. Suppose that S (t) 4: X 
and x ~ X~S(t). But then t A Ix = f0, SO that t _L Ix, which is a contradiction. 
Hence, S (t) = X. Suppose that s e ~- and define 

A = {x: s(x) <- t(x)} 

B = {x: t(x) < s(x)} 

ThenA A B = Q ~ a n d A  U B  = X .  L e t f = s l n a n d g =  tla. T h e n f g  ~ % 
and f ^ g = f0- Hence, f _L g, so that f + g ~ %. But s, t ----- f + g. Indeed, 
if x ~ A, then 

( f  + g)(x) = g (x) = t(x) ~ s (x) 

and if x ~ B, then 

( f  + g)(x) = f (x )  = s(x) > t(x) 

Hence, s = t = f + g and I~1 = 1. (d) ~ (a). Suppose that (d) holds and 
s, t ~ ~ .  Then by Lemma 8.1(d), we have 

S = Opt(S, t)  "~ [S t ~ t  (S A t t )]  t = (S t ~ t f o ) '  = S u  =" S A t <- t 
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Hence, s = t, so that I~1 = 1. (a) ~ (d). Suppose that ~- = {t}. Then for 
e v e r y f  g ~ % we have 

[ f t q ~ t ( f A g t ) ] , =  t - - f ' O t ( f A g t )  = t - -  [ ( t - - f )  + f ^ g t ]  

= f - - f A g ' =  + t ( f , g )  �9 

We say that an E-test space (X, ~ )  is s e m i c l a s s i c a l  if s ^ t = fo for 
every s, t ~ ~ with s :~ t. 

T h e o r e m  8.6 .  The fol lowing statements are equivalent. (a) (X, ~-) is 
semiclassical. (b) f t  A f s  = f o  for every f ~ %, s, t e ~-, s 4: t. (c) f t s  = s 

for e v e r y f  ~ %, s, t E %, s 4: t. (d) t s = s for every s, t E ~-, s 4: t. (e) 
+t(t, s)  = fo  for every s, t ~ ~-, s 4: t. ( f )  +t(s ,  g )  = s for every g ~ %, s, 

P r o o f  (a) =:~ (b). I f  (a) holds, then f t  ^ f ~  <_ t A S = f o  whenever s 4= 
t. (b) ~ (c). I f  (b) holds, then letting f = fo in (b) gives t A S = f0- Hence, 

f t  A s <_ t A s = fo ,  s o  t h a t  f~ t  = s _ f t  A S = s w h e n e v e r  s 4: t . ( c ) = , ( d ) .  
If  (c) holds, then letting f = fo in (c) gives t "~ = s whenever s 4: t. (d) 
(e). I f  (d) holds and s 4: t, then we have 

~ , ( t , s )  = t -  t A S  t =  t - -  t a t  = fo  

(e) =:> (f). I f  (e) holds and s 4: t, then 

f o  = +t( t ,  s)  = t -  t A St  

SO that s t - > t A s  t = t. H e n c e ,  t -  S A t - - > t a n d w e h a v e s A t = f o .  Hence, 
s ^ g t = fo  and we conclude that 

~bt(s,g) = s -  s A g t =  s 

(f) =* (a). I f  (f) holds, then letting g = fo in (f) gives 

s = s -  S A f t o =  S - - S A t  

Hence, s ^ t = fo whenever  s 4: t, so that (X, ~ )  is semiclassical. �9 
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