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An effect test space, or E-test space, for short, is a generalization of a test
space that is able to describe unsharp measurements. Effects in an E-test space
correspond to yes-no measurements, and observables correspond to general
measurements that may have more than two values. Sharpness, compatibility,
and orthogonality of effects are considered. It is shown that every observable is
determined by its eigenvalues and eigeneffects. The spectrum of an observable
is studied and special types of observables are investigated. Orthocomplements
and a natural local sum on an E-test space are introduced. Relationships between
the resulting structures and previously studied frameworks are presented.

1. INTRODUCTION

In 1972, Foulis and Randall (also see Randall and Foulis, 1973) intro-
duced test spaces (or quasimanuals) as a basis of a language for the empirical
sciences. As emphasized by Foulis and Randall, test spaces give a direct
description of laboratory operations. Information is lost in moving from a
test space to its corresponding logic, and for this reason, test spaces provide
a more fundamental description of a physical system. Twenty-two years later,
Dvureéenskij and Pulmannova (1994; also see Pulmannovd and Wilce, 1995)
presented a generalization of test spaces called D-test spaces in order to
include a description of unsharp measurements. Subsequently, the author
studied an equivalent framework called an effect test space, or E-test space,
for short (Gudder, n.d.).

It is shown in DvureCenskij and Pulmannova (1994) and Gudder (n.d.)
that a certain type of E-test space called an algebraic E-test space can be
organized into an effect algebra (Bennett and Foulis, 1995; Dalla Chiara and
Giuntini, 1994; DvureCenskij, 1995; Foulis and Bennett, 1994; Giuntini and
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Greuling, 1989; Greechie and Foulis, 1995; Kopka, 1992; Kdpka and Chova-
nec, 1994) in a natural way. This effect algebra II(X) corresponds to the logic
of the E-test space X. As before, information is lost in moving from X to
II(X), and X provides a more fundamental description of a physical system.
Moreover, the algebraic condition does not appear to have a clear physical
motivation, and for this reason the logic may not even exist. In this paper
we shall study E-test spaces in their own right and we shall not be concerned
with their relationships to effect algebras.

We begin by motivating the concept of an E-test space and presenting
some basic definitions. The most important of these definitions are the proper-
ties of sharpness, compatibility, and orthogonality for effects in an E-test
space. Although an effect corresponds to a yes-no measurement, an observ-
able corresponds to a general measurement that can have more than two
values. We show that every observable is determined by its eigenvalues and
eigeneffects. The spectrum of an observable is studied and various spectral
mapping theorems are proved. Special types of observables called universal
and maximal observables are defined and investigated.

Two kinds of orthocomplements on an E-test space are introduced and
their properties are studied. The orthocomplements are local in the sense that
they depend on the test being performed. A natural local sum and other
operations depending on this sum are defined. Relationships between the
resulting structures, MV-algebras (Cattaneo et al., n.d.; Chang, 1957, 1958;
Dalla Chlara and Giuntini, 1994) quantum MV-algebras (Giuntini, 1995,
n.d.), and BZ-algebras (Cattaneo, 1993; Cattaneo and Giuntini, 1995; Cattaneo
and Nistico, 1989) are discussed. Finally a Sasaki mapping on an E-test space
is considered and its connection to classical and semi-classical E-test spaces
is demonstrated (Bennett and Foulis, 1995).

2. MOTIVATION AND DEFINITIONS

We begin with some motivation that underlies our definition of an effect
test space. We consider a test ¢ to be a perfectly accurate (sharp) yes-no
measurement. Although a test is an idealization that cannot be attained in
practice, experimentalists continually refine their measuring instruments to
closely approximate a test. Let x be a possible outcome of an experiment
that is relevant to (testable by) ¢. If x occurs, then ¢ registers yes, and if x
does not occur, ¢ registers no. For example, a particle detector ¢ tests whether
a particle is in a certain region A C R>. If a particle is at a point x € A, then
t clicks, and otherwise, ¢ does not click.

Now make N runs of an experiment, where N is a large integer. Suppose
that the outcomes S(9) = {x, ..., x,} that are testable by ¢ are among the
possible outcomes of the experiment. Let ¢(x;) be the number of times that
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x; occurs and hence are ideally registered as ayes by t, i = 1, ..., n. Then
we can consider ¢ as a function - S(f) > Ny = N U {0}. We think of an
effect f as a submeasurement of ¢ that may not be perfectly accurate (can be
unsharp). Thus, effects correspond to yes—no measurements that are actually
realizable. Let S(f) = {x,, ..., X}, m = n, be the set of outcomes that are
testable by f. Now rerun the experiment N times and let f(x;) be the number
of times that f registers a yes when x; occurs. If fis unsharp, then f may not
register a yes when x; € S(f) occurs. Also, on rare occasions, f may register
a false yes for x; € S(f) even when x; does not occur. However, on the
average we would have f(x;) = t(x;), i = 1, ..., m. Notice that the effect f
is sharp if only if f(x;) = t(x;) for all x; € S(f).

We now present some definitions that are motivated by our previous
discussion. Let X be a nonempty set that we call an outcome space. The
elements of X correspond to the various outcomes of experiments that can
be performed on a fixed physical system. We call a function f € Nf a
multiplicity function and such functions take account of the fact that an
outcome may occur with a certain multiplicity when an experiment is per-
formed many times. For f, g € N§ we write f < g if f(x) = g(x) for all
x € X and in this case we define g — f € N§ by (g — H(x) = g(x) — f(x).
For f, g € N§, we define f+ g € Nf by (f + 2)(x) = f(x) + gx), f v
g € N by (fv g)x) = max (f(x), g(x)), and f A g € N by (f A g)x) =
min(f(x), g (x))-

If T C N§, we call (X, I) an effect test space or an E-test space, for
short, if the following conditions hold.

(El) For any x € X there exists az € J such that 1(x) # 0.
EQ)Ifs,t e Twiths <t thens =1t

The elements of F are called tests and f € NY is called an effect if f <
t for some ¢t € J. Condition (E1) states that every outcome occurs for some
test and Condition (E2) states that two different tests are not redundant.

Denote by f, € N¥ the function fy(x) = O for all x € X. By (E1l) there
exists a ¢t € I such that t # f;, and since f < ¢, it follows from (E2) that
fo ¢ T. We denote the set of effects by €(X, J). We also use the notation
E(X) or € if T or (X, J) are understood. It is clear that fy, € € and fA g €
€ whenever f, g € €. However, f v g need not be in € for f, g € €. For
f € €, we define

S(f) = {x e X: f(x) # 0)

An effect fis sharpint € J if f = t and f(x) = t(x) for all x € S(f) and
fis globally sharp if for every t € T, f A t is sharp in . Notice that if f is
globally sharp and f < ¢, then f is sharp in ¢
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Fort € J, we define ¢, = {f € €: f = t}. An indexed family f, € €,
o € A, is compatible if f, € €,,a € A, forsome t € T.If f,, o € A, are
compatible, then they can be performed simultaneously by employing a single
test. If f and g are compatible, we write f < g. Notice that f; « f for every
f € € and that « is a symmetric and reflexive relation. An indexed family
fo € €, a € A, is orthogonal if Zf, = t for some t € J. It is clear that if
(fo: @ € A) is orthogonal, then it is compatible. For f & €, we denote f +
-+ + f(n summands) by nf. We denote the characteristic function of Y C X
by Iy and use the notation I, = I;,,.

Lemma 2.1. (a) Forf € €,t € J, we have f+ ¢ if and only if f = ¢.
(byFors,t € J,wehave s tifandonly if s = 2. (c) If fe gand f; <
f & = g, then f © g

Proof. @) If f =t then f, t € €, so f < t. Conversely, if f « ¢, then
there exists an s € J such that f; t = 5. By (E2), s = ¢, so f = 1. (b) This
follows from (E2) and (a). (c) Since f < g, we have f, g =< ¢ for some ¢ €
J.Hence, fl, g1 =t soffg. n

Theorem 2.2. The following statements are equivalent. (a) (f,, @ € A)
is compatible. (b) v f, = ¢ for some t € J. (c) There exists an orthogonal
family (gg, B € B) such that f, = 2(gg, B € B, C B) for every a € A.

Proof. (a) = (b) If (f,, @ € A) is compatible, then f, = ¢, a € A, for
some ¢t € J. Hence, v f, = t. (b) = (c) Suppose v f, = tfort € T. Since ¢
= 2(t (01, x € §()), we conclude that (¢ (x)I,, x € S(2)) is orthogonal. Letting

B= U {B,....Bun=tx),Br=xi=1,...,n}
xeS8()

then (/g: B € B) is orthogonal. For any a € A, letting
B,= U Bi,....Bum=fu0} CB

xeS(fo)
we have that
fo=X U BeB,CH

(c) = (a) Since (gg: B € B) is orthogonal, there exists a t € T such that 2 g
=< t. Then for any « € A we have

=2 @uBeB. CB =Yg =t
so (fy, @ € A) is compatible. =

3. OBSERVABLES

We have seen that an effect corresponds to a yes—no measurement that
may be unsharp. We now consider general measurements that can have more
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than two values. The Borel g-algebra on R is denoted by B(R). An observable
on (X, 9) is a mapping F: B(R) — € that satisfies:

Ol FR) € T.
(02) IfA; € B(R), i e N, are mutually disjoint, then F(UA)) = ZF(A),
where the summation converges pointwise.

Thus, an observable can be thought of as a collection of effects that satisfies
the regularity conditions (O1) and (02). For A € B(R), we interpret F(A)
as the effect that is observed when F has a value in A. Hence, F(A) corresponds
to the yes—no question: “Does F have a value in A when the measurement
F is performed?”

Lemma 3.1. Let F be an observable on (X, J) such that F(R) = 1. (a)
F(D) = fy. (b) If A C B, then F(A) =< F(B) and F(B) = F(A) + F(B\A). (c)
For every A € B(R), F(A) € €, so (F(A): A € B(R)) is compatible. (d) If
A;, i € N, are mutually disjoint, then (F(A;), i € N) is orthogonal. (e)
F(A U B) = F(A) + F(B) — F(A N B). (f) If A; € RB(R) is a decreasing
(increasing) sequence, then lim F(4;) = F (N A;) (F(UA))) pointwise.

Proof. (a) Since
F(@) + FR) = F(J U R) = F(R)

we conclude that F(J) = f;. (b) Since B = A U (B\A) and A N (B\A) =
), we have F(B) = F(A) + F(B\A) and F(A) = F(B). (¢) Applying (b), we
have F(A) < F(R) = t for every A € B (R). (d) Since

>, F(A) = F(UA) <t
we conclude that (F(A;), i € N) is orthogonal. (e) Since
AUB=A\VANBUB\ANBYUM@ANB
and the terms on the right side are mutually disjoint, it follows from (b) that
FAUB)=FA\A N B) + F(B\AN B) + F(A N B)
= FA) + F(B) — FA N B)
() For x € 8(t), define m: B(R) = R by m(A) = F(A)x). Then 0 =< m(A)
= t(x) and if A; € B(R) are mutvally disjoint, we have
m(UA) = F(UA)®) = 3 FA)() = X m(A)

Hence, m is a bounded measure on B(R). If A; € WB(R) is a decreasing
sequence, it follows from the monotone convergence theorem for bounded
measures that

lim F(A)(x) = lim m(A)) = m(NA) = F(NA)(x)
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A similar result holds for increasing sequences. ®

Two observables F and G are compatible (written F < G) if F(R) =
G(R). Notice that < is an equivalence relation for observables. If F is an
observable and u: R — R is a Borel function, we define the observable u (F):
BR) — € by u(FA) = F ™' (A).

Lemma 3.2. (a) F « G if and only if F(A) « F(B) for all A, B € B(R).
b IfF=uH),G=vH),then Fo G, F<H G- H.

Proof. (a) If F < G, then by Lemma 3.1(b) we have
FA,GBY=FR)e J

so that F(A) < G(B). Conversely, if F(A) © G(B) for every A, B € B(R),
then F(R) « G(R). Applying Lemma 2.1(b), we have F(R) = G(R), so that
F © G. (b) Since

FR)=Hu'R)=H®R = Hv 'R)) = GR)
the result follows. =

If F({\}) # f;, then \ is an eigenvalue of F and F({\}) is the correspond-
ing eigeneffect. An eigenvalue is a value that F can attain and the correspond-
ing eigeneffect is observed when F has that value. We denote the set of
eigenvalues of F by a,(F) and call o,(F) the point spectrum of F. In general,
o,(F) need not be a Borel set. For example, let X C R be a nonmeasurable
set and let T = {Iyx}. Define F: B(R) = €(X, ) by F(A) = I4nx. Then F
is an observable with o,(F) = X. The same procedure shows that any subset
of R is the point spectrum of some observable. The next result shows that an
observable is determined by its eigenvalues and eigeneffects. An observable F
is atomic if for every A € B(R) we have

FA) = Y, (FUAD: N € A N o (F)) 3.1
Theorem 3.3. Every observable is atomic.

Proof. Let F be an observable on (X, ) with FR) = ¢t € J. Let [a,,
b,] C R be a closed interval, x € X, and suppose that F([a,, b;]) (x) # 0.
If c, is the midpoint of [a,, b;], then either F([a,, ¢\})(x) # 0 or F([c,, b, )(x)
# 0. Continuing this process, we obtain a decreasing sequence of closed
intervals [a;, b;] such that lim (b; — @) = 0 and F ([a;, bDx) = 1,i = 1,
2, ....Since R is complete, N[a;, b;] = A € R, and it follows from Lemma
3.1(f) that

F({ADX) = lim F([a;, bi])(x) = 1

If A € B(R) has the property that F(A)(x) # O implies that there exists a A
e A such that F({\})(x) # 0, we say that A is F-atomic. We have thus shown
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that any closed interval is F-atomic. Since R = U[i, i + 1],i € Z, it follows
that R is F-atomic. Since any open interval (g, ») C R is the union of an
increasing sequence of closed intervals, it follows from Lemma 3.1(f) that
(a, b) is F-atomic. If x € §(¢), then F(R)(x) = t(x) # 0. Hence, there exists
a \; € R such that F({\ })(x) # 0. If F({\, }(x) # t(x), then

FR{MDX) = 1(x) = F((MD®) # 0

Since R\{\,} is the union of two open intervals, there exists a A, € R\{\;}
such that F({\,})(x) # 0. If

F((MDO) + F{A D) # 1(x)

this same procedure gives a A3 € R\{A;, A} such that F({\;})(x) # 0.
Continuing this process, there exists a finite set

sz{)\l’--~7)\n}gR

such that F({\,}D(x) # 0,i = 1, ..., n, and EF({{\; () = ¢t (x).
If A € B(R), we have

FA)X) = 3 (FUADG): N e AN SY
Suppose that
FAY®) > X (FUAD): N e AN'S)Y
We would then have
t(x) = F(AU A9 (x) = F(A)(x) + F(A)(x)
> (FUAD@: N e ANSY + 2 (FUAD@): X e AN SY = 1(x)
which is a contradiction. We conclude that
FA® =X FAD@E: A e ANS)
so (3.1) holds. m

We now give a connection between effects and observables as defined
here and Hilbert space effects and observables. For ¢ ¢ J, form the Hilbert
space with its usual inner product

H = {l:S®—C: Y Wx)? < o}
For f € €, define the bounded linear operator f‘ on H, by

f®

(Ae) == )

U(x)
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and for an observable F satisfying F(R) = ¢ define F(A) = [FA)} for all
A e B(R). It is clear that fis a positive operator satisfying 0 < f =< I. Such
operators are Hilbert space effects (Cattaneo and Giuntini, 1995; Foulis and
Bennett, 1994; Greechie and Foulis, 1995). We shall show that F is a positive
operator-valued (POV) measure and these are Hilbert space observables.

Theorem 3.4}. (a) f € €, is sharp if and only if f is a projection. (b) If
FR) = t, then F is a POV measure on H,.

Proof. (a) If f € €, is sharp, then
() = Isp(enb(x)
so fis a projection. Conversely, if f" is a projection, then f* =, so that
(f/t* = fIt. This implies that f(x)/t(x) is 0 or 1 for every x € S(#). Hence,
f(x) = t(x) for every x € S(f), so fis sharp.
(b) Since F(R) = f = I, F is normalized. Suppose that A; € B(R) are
mutually disjoint, i = 1, 2, .. .. Then for any ¢ € H, and n € N we have

- 2
S, Feapw - F(u Ao

a:

S

-3

xeS()

25 t()2

xeS()

n o« A 2
[21 FA)(x) = F(t’l A,-) (x)]¢(x)

2

1Ys(x)12

2

3 P - F( QA,-)(x)
_ 1

F A
By 107 (U )(")

Since ¢ € H, there exist a sequence x; € S(f) such that §i(x) = 0 for x #
x,j=12,...,and [l = Ehb(xj)lz. Given an € > 0, there exists an N €

N such that EJ_N+1|IIJ(xj)|2 <e
- 2
F( U A,) x]
i=n+1

Hence,
- 2
F ( U Ai)(xj)
i=n+1

Ai)(xj) = ;1 F(A)Xx)

()12

2

|'~|f(xj)

A

N
e+ )2
j=1

Since F(A)(x) € Ny and

A

|
t (xj)2

iCs
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there exists an M e N such that n = M implies that

F( A,)(xj)=(), j=1,...,N
i=n+1

Hence, a, < € for n = M, so that lim a, = 0. It follows that £ (UA)) =
2F(A)), where the summation converges in the strong operator topology.

Notice that Theorem 3.4 has limited scope. First, it can only be applied
to compatible observables. Second, there are Hilbert space observables on
H, that do not have the form £. For example, Theorem 3.3 shows that F
must have pure point spectrum. Moreover, effects in the range of ' commute
and this need not hold for a general Hilbert space observable.

4. SPECTRA OF OBSERVABLES
We begin with a spectral mapping theorem for o,(F).

Theorem 4.1. If F is an observable and u a Borel function, then o,(u (F))
= u(o,(F)).

Proof If N e o,(u(F)), then u(F) ({\}) # fy, so that F(u~' ({\})) #
fo- Applying Theorem 3.3, there exists an a € u~'({A}) N o,(F). Since
a € 0,(F)and u(a) = N, we have N € u (0,(F)). Conversely, suppose that
A € u(o,(F)). Then there exists an o € 0,(F) such that A\ = u (o). Hence,

u(FYAN)) = Fa '((N) = F({a)) # f,
so that A € o,(u(F)). We conclude that o ,(u(F)) = u(c,(F)). =

Lemma 4.2. If F is an observable, then there exists a largest open set
A such that F(A) = f,.

Proof. Let As, & € A, be the collection of all open sets such that F (Ag)
= fyand let A = UA;. [Notice that this collection is nonempty because F ()
= fo-] Since the topology of R is second countable, there exists a countable
collection of open sets B;, i € N, such that A = UB, and for every i € N
there exists a 8 € A such that B; C A;. Since F(B)) = f, for every i € N
and, as is easily seen, F is subadditive, we have F(UB;) = f, for every
n e N. Applying Lemma 3.1(d), we conclude that

F(A) = lim F(G B,-) =f
n—0 i=1

Hence, A is the largest open set such that F(A) = f;. =
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The complement A€ of the set A in Lemma 4.2 is called the spectrum
of F and is denoted by o(F). If F(R) = ¢, it is clear that o(F) is the smallest
closed set B such that F(B) = t. Even if S(¢) is countable, o(F) need not be
countable. For example, let S(f) = {x,, x,, ...} be a countable set and let
Q = {Ay, A, . . .} be the rationals. Define F({\;}) = t(x,)I,, and for B € B(R)

F(B) = Y F({ND
NeB

Then F(A) # f, for any open set A, so that o(F) = R.

Lemma 4.3. A number X\ is in o(F) if and only if for every open set A
with A € A we have F(A) # f,.

Proof. Suppose A € o(F) and there exists an open set A with A € A
and F(A) = f;. Then F(A) = FR) = t, so that

Flo(F)NAY)=F@0({E) + FAY) - Fo(FYUA) =1t

But o(F) N A€ is closed and A ¢ o(F) N A€, so o(F) N A€ is a proper
subset of o(F). This is a contradiction. Conversely, suppose that A ¢ o(F).
Since o(F) is closed, there exists an open set A with A € A and A C o(F)".
Since F (a(F)) = fo, we have FA) = f;. =

The next result gives the relationship between o,(F) and o(F) and
extends the spectral mapping theorem to o(F). The closure of a set A is
denoted by A.

Theorem 4.4. (a) o(F) = a(F ). (b) o(u(F)) C u(o(F)). (c) if u is
continuous, then o(u (F)) = u(c(F)). (d) If o(F) is bounded and u is continu-
ous on o(F), then o(u(F)) = u(c(F)).

Proof. (a) If A € o,(F), then for any open set A with A € A we have
F(A) # fo. By Lemma 4.3, A € o(F), so that g,(F) C o(F). Since o(F) is
closed, we have 0,(F) C o(F). If \ € o(F), then by Lemma 4.3, for any
open set A with A € A we have F(A) # f;. Applying Theorem 3.3, we have
A N o,(F) # . Hence, N € a,(F), so that 6(F) C o,(F). (b) By Theorem
4.1 and (a) we have

o(u(F)) = a,(u(F)) = u(c,(F)) C u(c(F))

(¢) If A e o(F), then by (a), there exists a sequence \; € o,(F) such that
lim \; = \. Since u is continuous, lim «(\;) = u (). Hence, u(\) € u (c,(F)),
so that u(o(F)) C u(o,(F)). We then have

u(@(F)) C u(oy,(F)) = op(u(F)) = o(u(F))

The result now follows from (b). (d) Since o(F) is bounded, o(F) is compact.
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Since u is continuous on o(F), u (¢(F)) is compact and hence closed. Thus,
u(o(F)) = u(o(F)) and the result follows from (c). =

5. UNIVERSAL OBSERVABLES

An observable F is a universal observable for t € J if F(R) = t and
for any observable G such that G(R) = ¢ (i.e., G © F), we have G = u(F)
for some Borel function u. It is clear that two universal observables for ¢ are
equivalent in the sense that each is a Borel function of the other. We shall
show later that a test need not admit a universal observable. An observable
F is a maximal observable for t € J if F(R) = t and for any f € €, there
exists an A € B(R) such that F(A) = f (i.e.,, the range of F is €,).

Lemma 5.1. Any universal observable F for ¢ is maximal.

Proof. Given an f € €,, let |, A, € R and define the observable G by
G{MD) =F£GU{N) =t~ f,and for A € B (R).

GA) = 2, G({M))
NieA

Since F is universal for ¢, there exists a Borel function # such that G =
u(F). Hence,

F'(MD) =u®UND =GUNMD =
and we conclude that F is maximal. m

We shall show later that the converse of Lemma 5.1 does not hold. That
is, a maximal observable need not be universal.

Theorem 5.2. Let F be a maximal observable for . Then for any x e
S (2) there exists a A € o,(F) such that F({A}) = I, and for any a € o,(F)
there exists ay € S () such that F ({a}) = ml, for some m € N withm < #(y).

Proof. Since F is maximal, there exists a A e B(R) such that F(A) =
I,. Applying Theorem 3.3, there exists a A € A N g,(F). Since F({A}) =
F(A) = I, we have F({\}) = I.. This proves the first statement of the
theorem. Again, since F is maximal, there exists an A € B(R) such that
F(A) = t(x)I,. Applying Theorem 3.3, there exist N, ..., N\, € A N g,(F)
such that ZF({\;}) = t(x)I,. Now suppose a € 0,(F) and F({a})(x) # O,
F({a})(y) # 0, where x # y. Then in our previous notation a # \;, i = 1,
..., n Letting B = {a, A, ..., \,}, we have

F(B)x) = F({aD®) + 2 FUADW = FaD®) + 1(x) > 1(x)

which is a contradiction. Hence, F({a}) = ml, for somey € S(f) and m €
Nwithm=1t(y). =
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Notice that for a maximal observable F, if A € o,(F), then it is not
necessary for F({A}) = I, for some x e S(f). For example, let X = {x} and
t(x) = 3. Defining F({\}) = I, F({\;}) = 2I, gives a maximal observable
that is not universal, as the next theorem shows. We denote the cardinality
of a set A by Al

Theorem 5.3. Let F be a universal observable for «. Then for any x e
S(¢) there exists a set A, C o,(F) with |A,| = ¢(x) such that F({\}) = I, for
every N € A, and for any a € 0,(F) we have F({a}) = I, for some
y € S(1).

Proof. For x € S(f), letn = t(x) and let \, ..., \,+; € R be distinct.
Define the observable G by G({\;}) =1,i=1,...,n G({\ s }) =t —
t(x)I,, and for A € B(R)

G@A) = 2, G({\ND

N €EA
Since F is universal, there exists a Borel function u such that G = u (F). Hence,
Fu ') =GN =1, i=1,...,n

Applying Theorem 3.3, there exist unique a; € o,(F) suchthato; € u ™~ anp
and F({o,)) =1,i=1,...,n LetA, = {ay, ..., a,} give this postulated
set A,. If o € o,(F), then since F is maximal, we conclude from Theorem
5.2 that F({a}) = ml, forsome y € S(f) and m € N with m < 1(y). If
¢ A, then

F(A, U {a}) = FA) + F({a}) = t(y) + m)I, > «(y),
Since this is a contradiction, we conclude thata € A so that F({a}) =1,. =

Fort € J let {A,: x € S(¢)} be a collection of mutually disjoint sets
such that I1A,| = ¢(x). We define the cardinality of t to be 1t = |U A,l. Notice
that IS(#)l = izl and if IS (9! is infinite, then IS () = Izl

Corollary 5.4. (a) If F is universal for ¢, then lo,(F)I = ltl and if G is
an observable with G(R) = ¢, then |lo,(B)l =< l¢l. (b) If ¢ admits a universal
observable, then IS ()| = I¢l = IRI. (c) A test t admits a maximal observable
if and only if (SO = It = IRI

It is unknown whether the converse of Corollary 5.4(b) holds. However,
we shall show that this converse holds if 7] is countable.

Lemma 5.5. If 1l = IN{ and F(R) = G(R) = ¢, then there exists a Borel
isomorphism u: R = R such that o,,(u(G)) N o,(F) = &.
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Proof. By Corollary 5.4(a), lo,(F)|, lo,(G)l = INI. If A = g,(G) N
o,(F) = J, we are finished, so suppose that A # . Then there exists a B
€ B(R) such that 1B} = |Al and

BN [0,(G) U o, F)] =O

Let v: A = B be a bijection and extend v to u: R — R by defining u(\) =
v IA) for A € Band u(A\) = A for A\ € (A U B). Then u is a Borel
isomorphism and by Theorem 4.1, we have

0,(u(G)) = u(o,(G)) = B U (c,(G)4)
Hence, 0,(u(G)) No(F) = J. =

Theorem 5.6. If 1fl = NI, then ¢ admits a universal observable F, and
F is unique to within a Borel isomorphism.

Proof. Let S(f) = {x(1), x(2), ...} and let A; C R, i € N, be mutually
disjoint with IA;l = #(x(i)). Define the observable F by F({\}) = [ if
N € A; and for any A € B(R)

F4) = X F(\))
AeA
Then o,(F) = U A, and F(R) = . To show that F is universal for ¢, let G
be an observable with G(R) = 1. Applying Lemma 5.5, we can assume that
g,(F) N 06,G) = . By Theorem 3.3 and Corollary 5.4(a) there exists a
countable set {a;, o, ...} C R such that

G =Y (G{a)): o; € A)
for every A € B(R). Define u: R — R as follows. If
G({a}) = 2 nl(i)Ix(i)

iel)
where n,(i) # 0, i € I, € N, choose A}, ..., \"® € A, i € I, and let
uNDY = ay,i eI, j(i) = 1,...,n(). Continue in this way for a,, making
sure that the corresponding A} are distinct from those chosen for a, etc. Then
u(N) is defined for A € o,(F) and for A ¢ o,(F), we define u(\) = \. Then
u is a Borel function and for every A € B(R) we have

GA) =3 G o € A) = X FUNOD: uN?) = oy, oy € A)
= 3 FUNOD: NO € u™'(4) = F (&) = u(F)A)

Hence, G = u(F) and F is a universal for ¢.
To prove the uniqueness of F, let H be another universal observable for
t. Again by Lemma 5.5, we can assume that ,,(F) N ¢,(H) = . By Theorem
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5.3, there exist mutually disjoint sets B; C R, i € N, such that g,(H) =
U B;, 1Bl = t(x(i)), H{A}) = L, if A e B; and for every A € BR), H(A)
=2 (H({\): N € ANo,(H). Letv: 0,(F) = g,(H) be a bijection satisfying
v(A) = B, i € N, and extend v to u: R — R by defining u(A\) = v~'(\) for
A € 0, (H) and u(\) = N for A € (0,(F) U g,(H)). Then u is a Borel
isomorphism and for every A € B(R) we have

HA) =D (H{A): N € AN o, (H))
=D (Fu'A):u"'(N) € u~'A) N 0, (F)
= F(u"'(A)) = u(F)(A)
Hence, H = u(F) and it follows that F = u~'(H). =

Corollary 5.7. If Itl = INI and F, G are observables satisfying F(R) =
G(R) = t, then there exists an observable H and Borel functions u, v such
that F = u(G), G = v(H).

We say that an E-test space (X, J) is separable if Il < IN| for every
t € J. The following corollary gives a direct reason why compatible observ-
ables are simultaneously measurable.

Corollary 5.8. Let F and G be observables on a separable E-test space
(X, 7). Then F < G if and only if there exists an observable H and Borel
functions u, v such that F = u(H), G = v(H).

6. ORTHOCOMPLEMENTS

This section discusses two types of orthocomplements for an E-test
space (X, J). These orthocomplements are local because they depend on the
test being performed. For f € € (X, J) and ¢t € J, we define the Kleene (or
diametrical) orthocomplement of f by f* = t — f A 1. Notice that f* € € for
every f € €.

Lemma 6.1. () fy = t, ' = fo (b) f = g implies g’ = f.. () f*' = f A
tand f* = fifandonlyif f= e () f"=f () (frg)=fivg' . OIS
vge (e, fog,then(fvg)=FfnAg.

Proof. (a)is clear. (b)) If f= g, then fAt =gAt, sothatt —gAat =<
t — f At Hence, g' =< f*. (¢c) We have

fif=t—Q@—fADAt=t—(—fAl)=fnt
and the next statement follows directly. (d) Applying (c) gives
fm=t—fAt=f'
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(e) Since fAg=f g wehavethat (fAg)y =f, g" If h=f' g then
Wsfl=far<f
and similarly, h* =< g. Hence, h' =< f A g, so that
hzhat=h"z=(fAg)
Hence, (fA g =f'v g'. (f) Since fv g = f, g, we have that (fv g) =
fLIfh<f, g thenh' = f"=fAtand h' = g A t. Hence,
MZ(fAadviga)=(fvgat
Since 7 = f' < ¢, we have
h=hnt=h"<[(fvg) Al =(fvg)
Hence, (fv gy =f‘rg’. m

Theorem 6.2. (a) fis sharp in ¢ if and only if f < ¢t and f A f* = f,. (b)
fis sharp in ¢ if and only if f v f = 1. (c) fis globally sharp if and only if
fafi=fiforeveryt e T. () fv f' =t forevery t € €, then fis
globally sharp.

Proof. (a) Suppose that fis sharp in ¢. Then f < rand fA f' = f A
¢ —f9.1fx ¢ S(f), then f(x) = 0, so that (f A f)(x) = 0. If x € S(f),
then ¢ (x) — f(x) = 0, so again (f A f)(x) = 0. Hence, f A f' = f,. Conversely,
suppose that f<rtand fAf = fA(t — f) = fo. If x € § (), then f(x) ¥
0, so that #(x) — f(x) = 0. Hence, fis sharp in ¢ (b) If fis sharp in ¢, then
S =rtand by (a), fAf' = f,. Hence, fv f' = (f A f') = t Conversely,
suppose that fv f' = . Thenf < tand f A f' = (f v f'Y = f,, so the result
follows from (a). (c) If f is globally sharp, then f A ¢ is sharp in ¢ Since f*
= 1, we have by (a) that

A=A AD=(fADAf =(fAaDA(fAD =

Conversely, suppose that f A f' = f; for every t € J. Then for any
t € J, we have

UAdn(faty =(fangnfi=falf'an=faf'=f

Applying (a) gives that f A ¢t is sharp in ¢. Hence, f is globally sharp.
(D Iffvfi =t thenfaf = (fvf) =f,. The result now follows from (c). =

For f € € (X, 9), t € T, we define the Brouwer (or intuitionistic)
orthocomplement of f by f, = tlg .. Notice that f, € € for every f € €.

Lemma 6.3. @) fo, = t, t, = fo. (b) g = f, if and only if S(®) N S(g)°
CSONSUr.(f=gimpliesg, =f (D (fAD=f.QfAf =l



2696 Gudder

O fi = tsy. @ fu =fatand f, = fif and only if f =< ¢. (h) f,,, = f.. (D)
frgh=fiveg. Iffvgeélie,f<g),then(fve),=fing.

Proof. (a) is clear. (b) If g, = f,, then S (g) C S(f". Hence, S(g) C
S(f)° and the result follows. Conversely, suppose that S(#) N S(g)° C S
N S(f)°. We then have

SE)=SONSE CSONSY) =S5

Hence, if x € S(g,), we have x € S(f)) and g(x) = t(x) = f{x). Also, if x
¢ S(g), then g(x) = 0 = f(x). We conclude that g, = f.. (c) If f = g, then
S(f) C S(g), so that S(g)° C S(f)°. The result now follows from (b). (d)
Since S(t) N S(f)* = S N S(f A 1), the result follows from (b). (e) If
f(x) = 0, then (f A f)(x) = 0 and if f (x) # O, then fi(x) = 0, so that
(fAf)x) = 0. Hence, f A f, = fo. () Hf x € S(f), then x € S(f))", so that
fi{x) = t(x). Suppose that x € S(f).. Then fi(x) = t(x). If t(x) # 0, then x
€ S(f), so that f(x) = 0. If t(x) = O, then x € S(f)", so that f,(x) = #(x)
= (. The result now follows. (g) If x € S(f), then f(x) = t(x) = (f A H(x).
If x € S(f)S, then fi,(x) = 0 = (f A )(x). Hence, f, = f At If f = ¢, then
f=fAat=f,. The converse follows because f,, = t. (h) From (c), (d), and
(g) we have f,, = (f A 1), = f. Since f; = ¢, we have from (g) that f,, = f..
(1) Suppose that f(x) = g (x). If f(x) = 0, then f(x) = ¢(x), so that (f; v g)(x)
= t(x) and (f A g)(x) = 0, so that (f A g)(x) = t(x). If f(x) # 0, then g(x)
# 0, so that f(x) = g(x) = 0. Hence, (f; v g)(x) = 0 and (f A g)(x) # 0,
so that (f v g)(x) = 0. A similar result holds if g(x) = f(x) and the result
follows. (j) Since f, g = fv g, we have (fv g), = f,, g. Suppose that h =
fog-Thenh, = f, = fAatand h, = g, = g A t. Hence,

h=(frdv@Ean=(fvgnt
The result now follows because

h=hat=h,=[(fvgatl,=(fvg, N

Theorem 6.4. (a) f, = f'. (b) f, = (f}Y. (¢) f; is sharp in ¢. (d) f,, is the
smallest sharp element in %, such that f; = f A . (e) (f*), is the largest sharp
element in ¢, such that (f7), = f A t. The following statements are equivalent:
fissharpint, f= f,, f = (). f = t, and f* = f,. (g) The following statements
are equivalent: f is globally sharp, f, = f A ¢t for every ¢t € T, f* = f, for
everyt € 7.

Proof. () If fi(x) = 0, then fi(x) = f'(x). If f(x) # 0, thenx € S(H N
S(f)* and fi(x) = t(x) = f(x). (b) Applying Lemma 6.3(f), we have

(ﬁ’ =t —-ﬁ =1 - tIS(f)C = t(l - IS(f)E) = tls(f) =~ﬁt
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(c) As in (a), if fi(x) # 0, then f(x) = t(x). (d) By (c), f is sharp in 7 and
by Lemma 6.3(g), f, = f A t. Suppose that h is sharpinfand f At = h If
fiulx) # 0, then by Lemma 6.3(f), x € S(¢) N S(f). Hence, (f A 1) (x) # 0,
so that h(x) = t(x) = f,(x). Thus, f, = h and the result follows. (¢) By (a)
and Lemma 6.1(c) we have (f'), = f" = f A ¢ and by (c), (f"), is sharp in .
Suppose that z is sharpin t and & < f A ¢. If h(x) # 0, then h(x) = t(x), so
that (f A H(x) = (x) and f(x) = t{x). Hence, f'(x) = 0, so that

(f)%x) = t(x) = h(x)

Hence, A = (f"), and the result follows. (f) This follow from (d), (e), and
the fact that f is sharp in ¢ if and only if f < tand r — f = f,. (g) This follows
from(d)and (f). =

Denote the sharp elements in €, by &,. The next result shows that &, is
a classical structure.

Corollary 6.5. (¥, <, ") is a complete atomic Boolean algebra that is
isomorphic to 25,

Proof. If f, g € F, then clearly fA gand fv g € &, so that (¥,, =)
is a distributive lattice. If f € &, then by Theorem 6.4(f), f* = f, € ¥,.
Moreover, by Lemmas 6.1 and 6.3 we have f* = f, f < ¢ implies g’ = f7,
and fA f' = fyfor all f, g € &,. Hence, (¥,, =, /) is a Boolean algebra that
is clearly complete. If f € &; and f(x) # 0, then ¢(x)I, is an atom in ¥, and
t(0)l, = f, so that (,, =, ‘) is atomic. It is evident that the mapping ¢: &,
— 20 given by &(f) = S(f) is an isomorphism. =

7. The Operation D,

We now define a natural local sum on & (X, 9). For t € 7, define the
binary operation B, € X € > E by fD, g = (f+ g A t.

Lemma 7.1 @) fOg =g DL O FfDfo=frt () fDt=t(d)f
Bf=t@UrDDErD=fD s OfD DM =D gD h

Proof. (a)-(c) are clear. (d) First note that
fOf =(+t—fadnat

If f(x) = t(x) or if f(x) > t(x), then the right side of the previous equation
equals £(x). (e) if f(x) + g(x) = t(x), we have

(fD )x) = [f(x) + gW] At(x) = flx) + g(x)
=fAt(x) + g At(x)
=[fAattganatd® =[(fAn) S (gDl
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Now suppose that f(x) + g(x) > t(x). Then (f D, g)(x) = t(x).

Case 1. f f(x) = t{(x) or g(x) = t(x), we have (fA L + g A D)(x) =
t(x), so that

[(fAD)D (g ADIK) = t(x)
Case 2. If f(x) < t(x) and g(x) < t(x), then ( fat+gadx)=fx)
+ g(x), so again the equation in Case 1 holds. (f) Applying (e), we have
O gD =[f+g@+tWNAatlat=[fat+(g+ At
=(frgtat=[(f+rgoAatt+thatrt
=[(f+Art+thint=(f D gD h =&

Examples can be given which show that the muitivalued logic condition
(Chang, 1957, 1958)

MV) (f D, 8) Dg = (fD, g D, f

the quantum condition (Giuntini, n.d.; Gudder, 1995)
QD f D, g # 1 implies [g D, (f D) = f

and the quasi-linear condition (Giuntini, 1995; Gudder, 1995)
QL)fD, g # timpliesf<t— g

do not hold. However, (QI) and (QL) hold pointwise.

Lemma 7.2. (a) (f D, g) (x) # 1(x) implies [g D, (f D, g) 1) fx). (b)
(fD: g) (x) = t(x) implies [g D, (f D, &)T(x) = g'x). €) (f D) # 1(x)
implies f(x) < t(x) — g(x).

Proof. Let h = [g B, (f D, g)'). We then have
h=0O - (f+tanl=t—[g+t—-(f+ordlnat
@) If (f D, g)(x) # t(x), then f(x) + g(x) < #(x). Hence,
h(x) =1t(x) — [g() + () — f(x) — gD A t(x) = f(x)
(b) If (f D, g)(x) = t(x), then f(x) + g(x) = t(x). Hence,
h(x) = 1) — [g() + (¢ @) — t())] A t(x) = g'()

(c) If (f D, g)(x) # t(x), then [f(x) + g(x)] A t(x) # t(x), so that f(x)
+ g(x) < t(x). Hence, f(x) < t(x) —g(x). m

We define the dual operation (Giuntini, 1995, n.d.) f O, g = (f' D, g*)'
and the operations (Giuntini, 1995, n.d.)
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frg=0d g0 ¢
fuig=(f0,g) D¢
Theorem 7.3. (@) fO, g =(fat+gant—DVvfo. b)fM,g=frg
At @ fg=(fvegnat
Proof. (a) By definition, we have
fOg=t-lt—-frd+@—ganlat

If f(x) > t(x), then both expressions in the statement (a) equal
(g A t)(x). If g (x) > t(x), then both expressions equal (f A £)(x). Now suppose
that f(x), g(x) = t (x).

Case 1. If f(x) + g(x) = t(x), then
[(fat+gnat—Dvflx)=fx)+gkx) — )
and

(fO, ©)x) = t(x) — [2t(x) — fx) — g At (x) = f(x) + g(x) — £(x)

Case 2. If f(x) + g(x) = t(x), then
[(fat+gnat—nVvf] =0=(f0 8K
(b) If g(x) = t(x), then by (a) we have
(SN, = (FO, ) = (fADX) = (fAg DX
If g(x) = t(x), then by (a) we have
from = -0 gl ={lt+f~- 9 Ar110, g}
={lc+f-prttg—1vhlx)

Case 1. If f(x) = g(»), then t(x) + f(x) — g(x) < 1(x), so that
(Mo =fx) = (frgadx

Case 2. If f(x) = g(x), then t(x) + f(x) — g(x) = t(x), so that
(M 8w =g =(frgrnx)
(c) If g(x) = #(x), then by (a) we have
(fUu g = @A) =t =[fve Al
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If g(x) = t(x), then by (a) we have
(fuU, 8 = {[fO, ¢~ I D, glx) = [(fAart =g Vi + glx)

Case 1. If f(x) = g(x), then
fU ) =gx)=[(fvg Atlx

Case 2. If f(x) = g(x), then
(fU ) =(fADx) =[(fveg atx) =

Notice that in Theorem 7.3(c), f v g need not be in €. However, (f v
g) At € €, so the result makes sense.

Corollary 74. @) fM, g =g, f,fu, g =g f ) (fN, g =f'L,
g, (U g =fNg.c)(fO,e =g . (fS g = 0z¢g"

Proof. Part (a) follows from Theorem 7.3(b), (c). (b) Applying Theorem
7.3(b), (¢) and Lemma 6.1(e), we have

Mgy =Ungay=Unrgy=fveg' =('vghar=fug
Similarly, we have (where again f v g need not be in €)
(fu gy =lfveanrtd=(vey=rag=fnrgnat=fug
(c) Applying Lemma 6.1(c) and Lemma 7.1(e), we have
fO =DV =("Dg)at=1D¢g
(FO:g) =(fatDigat)y=(f"D g =0 =

The next result shows that the QMV axioms (Giuntini, 1995, n.d.;
Gudder, 1995) hold.

Corollary 7.5. @) fU, @M, )y =fAat.®) (N, MA=(fM 8N,
(g N, h. (C)f@, [gm (f @, byl = (f & g n [f@t f @, hyl. (d)f®t
g =g @@ DU E D=1t ‘

Proof. (a) Applying Theorem 7.3(b), (c) gives
fU@EnN=fUu@AfAD=IfV@AFADIAL=fAL
(b) By Theorem 7.3(b), we have

(NN @gnh=(argrda@ahn)=faganhat=((N,g M h
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(c) If g (x) = (f D, h)'(x), then both sides of the equation evaluated at x equal
(f D, 9)x). If g(x) = (f B, h)'(x), then both sides of the equation evaluated
at x equal [f D, (f D, h))'(x). (d) By Theorem 7.3(b), we have
O MY =fO ' Ag)=(f+f rgnt
If f{(x) = g(x), then the right side becomes
[(f + 9 Artl) = (f B, )
If f{(x) = g(x), then t(x) = f(x) + g(x) and the right side becomes
[(F+ MA@ =[f+ 1= FADAAX) = 1@ = (D, 9
(e) By Theorem 7.3(c), we have
LoD NHN=U—fArrt+atll,G—gat+fHint

=[t—fat+atlvt—gat+tNHal]
If (g A D(x) = (f A D(x), then
1@) — (fADm) + g() = 1(x) — (fA D) + (g ADKX) = t(x)
Hence, the right side evaluated at x equals 7(x). The same result holds if
fADX) =z (@ADX). m
The next two corollaries follow from our previous work.

Corollary 7.6. For any t € J, (%, D, ', fo) is an MV-algebra (Chang,
1957, 1958). That is, (a) (f D, g) D, h = (g D, h) S, f. b) fS, fo = f. ()
fOfH=fDf =£E@ (D gD g=(Dg)Df

Corollary 7.7. Forany t € T, (%,, v, A, %, , fo) is a distributive BZM-
lattice (Cattaneo and Nistico, 1989). That is, €, is a distributive lattice with
smallest element f; that satisfies: (@) f* = £ B) (fv gy =f rg. ©fAf
=gV Wfrfu=f@UVE=[ng OFAfi=fo (@ ) = fo
M (frer=1ive.

It is easy to verify that f, © f, = ¢ and f B/f,, = f,. These two properties
and the previous two corollaries give the following result.

Corollary 7.8. For any t € T, (é,, ®,, ', ,, fo) is an MVBZM-algebra
(Cattaneo et al., n.d.).

8. THE SASAKI MAPPING
For a test t € T, we define the Sasaki mapping ¢, € X € — € by
dlf=f—frg

The counterpart of ¢, in previous orthostructures has been quite useful and
important (Bennett and Foulis, 1995).
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Lemma 8.1. (3) b(f, g) = fif and only if f A g* = fi. (b) &£ 8) = ¢
implies g < f. () &/(f, fo) = fo if and only if f = 1. (d) &£, ) = f. (&) it
H=fatdg=himplies bf, &) = b, h).

Proof. (a) b(f, g) = fif and only if f — f A g’ = fand this is equivalent
tofag =fo.od)If d(f g = g, thenf — fA g’ = g, sothat g = f (c)
&(f fo) = fo if and only if f = f A ¢ which is equivalent to f = ¢ (d) b(f,

N =f—(fnfo) =f (e) We have
dLH=t—Cnafy=t—f=fnt
D Ifg=h then h’' = g',sothat fA h' = f A g'. Hence,
S, =f—frg=f—frhi=0b(fh) ®
Theorem 8.2. We have & ,(f, g) = &g, ) if and only if for x € X either
fx), g(x) = t(x) or f(x) = g(x).

Proof. If f(x) = g(x), then, clearly, d(f, g)(x) = /g, f)(x). Suppose
that f(x), g (x) = t(x). We then have

&(f, ) = f(x) — f&) A [1(x) — (g A D]
=fx) —f) Alt(x) — g)]

Case 1. If f(x) + g(x) =< t(x), then b(f, g)x) = 0.
Case 2. If f(x) + g(x) = t(x), then
oS, ) = f(x) + g(x) — t(x)

In either Case 1 or Case 2, we have &,(f, g)(x) = d(g, H(x).
Conversely, suppose that b(f, g8) = ¢[g, f). Assume that f(x) > r(x)
and g(x) =< t(x). We then have

o, &) = fl0) — g'x)
g, Nx) = g(x) — g A[t(x) — f() A t(0)] = g(x)

Hence, f(x) = g(x) + g'(x) = #(x), which is a contradiction. Thus, either
f), g(x) > t(x) or f(x), g(x) = t(x). Suppose that f(x), g(x) > t(x). We
then have

dAf, ) = f(x) — g'x) = f(x)
olg, Nx) = gx) — filx) = g)
Hence, f(x) = g(x). =
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Corollary 8.3. (a) If f(x) # g(x) for every x € X and b,(f, g) = d(g,
. thenf g € €. (b)If f, g € €, then b(f, g) = dbig N.

Lemma 84. Forallt € T, f € €, we have

0 if flx) =it(x)
&S, )x) = { 2f(x) — t(x) if e = fx) < t(x)
fx) if 1(x) =f@x)

Proof. Simple verification. =
We say that an E-test space (X, 9) is classical if 1T} = 1.

Theorem 8.5. The following statements are equivalent. (a) (X, J) is
classical. (b) There exists a t € J such that &,(f, g) = db(g, f) for every f,
g €€ (c)fArg=foimplies f L g. (d) There exists at € J such that for
every f, g € € we have

LS, 8) = [f' & (f A g

Proof. We shall show that (a) = (b) = (¢) = (a) and that (a) < (d).
(a) = (b) follows from Corollary 8.3(b). (b) = (c). Suppose that o(f, g) =
&g f) forevery f, g € € and that f A g = f,. If f(x) = g(x), then f(x) =
g(x) = 0, so that f(x) + g(x) =< t(x). If f(x) # g(x), then by Theorem 8.2,
f, g € %€, Since f A g = fo, we conclude that f(x) + g(x) = r(x). Hence,
f L g (c) = (a). Assume that (c) holds and 7 € J. Suppose that S(z) # X
and x € X\S(¢). But then t A I, = f,, so that t L I, which is a contradiction.
Hence, S(f) = X. Suppose that s € J and define

A= {xsx)=<tx)}
B = {x: t{x) < s(x)}

ThenANB=ZandAUB=X Letf=slzandg = tl,. Thenf, g € ¢
and fA g = fo. Hence, f L g, sothatf+ g € €. Buts, ¢t < f + g. Indeed,
if x € A, then

(f+ 9 =gk =t(x) =s(x)
and if x € B, then
(f + 9x) = f(x) = s(x) > t(x)

Hence, s =t = f + g and |J| = 1. (d) = (a). Suppose that (d) holds and
s, t € J. Then by Lemma 8.1(d), we have

s=¢Ls, ) =[s"D, (sAtH) = (S'®:fo)' =st=sAt=st
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Hence, s = ¢, so that || = 1. (a) = (d). Suppose that T = {¢}. Then for
every f, g € € we have

DU =t—fB (fagh=t—-lt—fH+frg
=f—frg'=d(fig) ™

We say that an E-test space (X, J) is semiclassical if s A t = f; for
every s, t € J withs # t.

Theorem 8.6. The following statements are equivalent. (a) (X, J) is
semiclassical. (b) f' A f* =foforeveryfe €,s,t e T,s # 1 (c)f* =5
foreveryfe €,5,t € €,s #t (d)t* =sforeverys,tre J,s # ¢ (e)
ot s) =foforeverys, t € I, s # 1. (f) dfs, g) = s forevery g € €, s,
teJ,s #t

Proof. (a) = (b). If (a) holds, then f' A f* = t A s = fy whenever s #
t. (b) = (c). If (b) holds, then letting f = f; in (b) gives t A s = f;. Hence,
['As=tAns=fy,sothat fY =5 — f' A s = s whenever s # . (c) = (d).
If (c) holds, then letting f = f5 in (c) gives ¢* = s whenever s # . (d) =
(e). If (d) holds and s # ¢, then we have

bt,s) =t—tASsS=t—tAt=Ff
(e) = (). If (e) holds and s # ¢, then
fo=dlt,s)=t—tAas'

sothat s =t A s* =t Hence, t — s At = t and we have s A 1 = f;. Hence,
s A g' = fy and we conclude that

s, ) =s—sng=s
(f) = (a). If (f) holds, then letting g = f; in (f) gives
S=S—SAfo=5—5s5nt

Hence, s A t = f; whenever s # ¢, so that (X, J) is semiclassical. m
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